A Computational Approach
to the Ordinal Numbers

Documents ordCalc_0.3.2

Paul Budnik

Mountain Math Software

paul@mtnmath.com

Copyright © 2009 - 2012 Mountain Math Software
All Rights Reserved
Licensed for use and distribution under
GNU General Public License Version 2.

Source code and documentation can be downloaded at
www.mtnmath.com/ord
and sourceforge.net/projects/ord.

Contents

List of Figures 5
List of Tables 5

1 Introduction

1.1 Intended audience ... 8
1.2 The Ordinals .. 8

2 Ordinal notations 9

2.1 Ordinal functions and fixed points 10
2.2 Beyond the recursive ordinals 11
2.3 Uncountable ordinals ... 12

3 Generalizing Kleene’s \mathcal{O} 13

3.1 Objective mathematics ... 13
3.1.1 Avoiding the ambiguity of the uncountable 14
3.1.2 Objective mathematics beyond ω^{CK} 15
3.2 Kleene’s \mathcal{O} .. 15
3.3 \mathcal{P} an extension of Kleene’s \mathcal{O} 16
3.3.1 \mathcal{P} conventions .. 17
3.3.2 \mathcal{P} definition ... 17
3.3.3 Summary of rules for \mathcal{P} 19
3.4 \(\mathcal{Q} \) an extension of \(\mathcal{O} \) and \(\mathcal{P} \) .. 20
 3.4.1 Hierarchies of ordinal notations .. 20
 3.4.2 \(\mathcal{Q} \) syntax ... 21
 3.4.3 \(\mathcal{Q} \) conventions ... 22
 3.4.4 Ranking labels (lb) in \(\mathcal{Q} \) .. 24
 3.4.5 \(\mathcal{Q} \) definition ... 25
 3.4.6 Summary of rules for \(\mathcal{Q} \) .. 27
3.5 Conclusions .. 28

4 Ordinal Calculator Overview .. 28
 4.1 Program structure and interactive mode ... 30
 4.1.1 Program structure .. 30
 4.1.2 Interactive mode ... 31
 4.2 Recursive ordinal notations and the Cantor normal form 31
 4.3 The Veblen hierarchy ... 32
 4.3.1 Two parameter Veblen function ... 32
 4.3.2 Finite parameter Veblen functions ... 33
 4.3.3 Transfinite Veblen functions ... 36
 4.4 Limitations of ordinal notations .. 36
 4.5 Notations for the Church-Kleene ordinal and beyond 38
 4.5.1 Notations for countable admissible ordinals 39
 4.5.2 Admissible ordinals and projection 41
 4.6 Ordinal projection with nested embedding 44
 4.7 Mathematical truth .. 47
 4.7.1 Properties of the integers .. 54
 4.7.2 The reals ... 55
 4.7.3 Expanding mathematics ... 56

5 Program structure .. 57
 5.1 virtual functions and subclasses .. 57
 5.2 Ordinal normal forms .. 58
 5.3 Memory management .. 58

6 Ordinal base class ... 58
 6.1 normalForm and texNormalForm member functions 59
 6.2 compare member function ... 60
 6.3 limitElement member function ... 60
 6.4 Operators .. 60
 6.4.1 Addition .. 62
 6.4.2 multiplication ... 62
 6.4.3 exponentiation ... 63
1 Introduction

The ordinal calculator is a tool for learning about the ordinal hierarchy and ordinal notations. It is also a research tool. Its motivating goal is ultimately to expand the foundations of mathematics by using computer technology to manage the combinatorial explosion in complexity that comes with explicitly defining the recursive and larger countable ordinals implicitly defined by the axioms of Zermelo Frankel set theory\[10, 4\]. The underlying
philosophy focuses on what formal systems tell us about physically realizable combinatorial processes. Appendix A elaborates on this.

Appendix B “Using the ordinal calculator” is the user’s manual for the interactive mode of this program. It describes how to download the program and use it from the command line. It is available as a separate manual at: www.mtnmath.com/ord/ordCalc.pdf. This document is intended for those who want to understand the theory on which the program is based, understand the structure of the program or use and expand the program in C++.

All the source code and documentation (including this manual) is licensed for use and distribution under the GNU General Public License, version 2. The executables link to some libraries that are covered by the more restrictive version 3 of this license.

1.1 Intended audience

This document is targeted to mathematicians with limited experience in computer programming and computer scientists with limited knowledge of the foundations of mathematics. Thus it contains substantial tutorial material, often as footnotes. The ideas in this paper have been implemented in the C++ programming language. C++ keywords and constructs are in teletype font. This paper is both a top level introduction to this computer code and a description of the theory that the code is based on. The C++ tutorial material in this paper is intended to make the paper self contained for someone not familiar with the language. However it is not intended as programming tutorial. Anyone unfamiliar with C++, who wants to modify the code in a significant way, should consult one of the many tutorial texts on the language. By using the command line interface described in Appendix B, one can use most of the facilities of the program interactively with no knowledge of C++.

1.2 The Ordinals

The ordinals are the backbone of mathematics. They generalize induction on the integers\footnote{Induction on the integers states that a property holds for every integer \(n \geq 0 \), if it is true of 0 and if, for any integer \(x \), if it is true for \(x \), it must be true for \(x + 1 \).} in an open ended way. More powerful modes of induction are defined by defining larger ordinals and not by creating new laws of induction.

The smallest ordinals are the integers. Other ordinals are defined as infinite sets\footnote{In set theory 0 is the empty set. 1 is the set containing the empty set. 2 is the set containing 0 and 1. Each finite integer is the union of all smaller integers. Infinite ordinals are also constructed by taking the union of all smaller ones. There are three types of Ordinals. 0 or the empty set is the smallest ordinal and the only one not defined by operations on previously defined ordinals. The successor to an ordinal \(a \) is the union of \(a \) and the members of \(a \). In addition to 0 and successor ordinals, there are limit ordinals. The smallest limit ordinal is the set of all integers or all finite successors of 0 called \(\omega \). Ordinals are well ordered by the relation of set membership, \(\in \). For any two ordinals \(a \) and \(b \) either \(a \in b \), \(b \in a \) or \(a = b \). A limit ordinal consists of an infinite collection of ordinals that has no maximal or largest element. For example there is no single largest integer. Adding one to the largest that has been defined creates a larger integer.}. The smallest infinite ordinal is the set of all integers or all finite successors of 0 called \(\omega \).

Induction on the integers states that a property holds for every integer \(n \geq 0 \), if it is true of 0 and if, for any integer \(x \), if it is true for \(x \), it must be true for \(x + 1 \).

\[p(0) \land \forall x \in \mathbb{N} p(x) \rightarrow p(x + 1) \rightarrow \forall x \in \mathbb{N} p(x) \]
program that lists the integers. This is an abstraction. Real programs cannot run forever error free. However the program itself is a finite object, a set of instructions, that a computer program can manipulate and transform. Ordinals at or beyond ω may or may not exist as infinite objects in some ideal abstract reality, but many of them can have their structure represented by a computer program. This does not extend to ordinals that are not countable, but it can extend beyond the recursive ordinals3.

Ordinal notations assign unique finite strings to a subset of the countable ordinals. Associated with a notation system is a recursive algorithm to rank ordinal notations ($<$, $>$ and $=$). For recursive ordinals there is also an algorithm that, given an input notation for some ordinal α, enumerates notations of all smaller ordinals. This latter algorithm cannot exist for ordinals that are not recursive but an incomplete variant of it can be defined for countable ordinals.

The ultimate goal of this research is to construct notations for large recursive ordinals eventually leading to and beyond a recursive ordinal that captures the combinatorial strength of Zermelo-Frankel set theory (ZF4) and thus is strong enough to prove its consistency. Computers can help to deal with the inevitable complexity of strong systems of notations. They allow experiments to tests ones intuition. Thus a system of notations implemented in a computer program may be able to progress significantly beyond what is possible with pencil and paper alone.

2 Ordinal notations

The ordinals whose structure can be enumerated by an ideal computer program are called recursive. The smallest ordinal that is not recursive is the Church-Kleene ordinal ω_{CK}. For simplicity this is written as ω_{15}. Here the focus is on notations for recursive ordinals and larger countable ordinals in later sections. The set that defines a specific ordinal in set theory is unique, but there are many different computer programs that can define a notation system for the same recursive ordinal.

A notation system for a subset of the recursive ordinals must recursively determine the relative size of any two notations. This is best done with a unique notation or normal form for each ordinal represented. Thus it is desirable that an ordinal notation satisfy the following requirements:

1. There is a unique finite string of symbols that represents every ordinal within the

3A recursive ordinal, α, is one for which there exists a recursive notation. This a recursive process that enumerates notations for all ordinals $\leq \alpha$ and a recursive process that decides the relative size of any two of these notations. Larger countable ordinals cannot have a recursive notation, but they can be defined as properties of recursive processes that operate on a partially enumerable domain. For more about this see Section 10.

4ZF is the widely used Zermelo-Frankel formulation of set theory. It can be thought of as a one page computer program for enumerating theorems. See either of the references [10, 4] for these axioms. Writing programs that define notations for the recursive ordinals definable in ZF can be thought of as an attempt to make explicit the combinatorial structures implicitly defined in ZF.

5 ω_1 is most commonly used to represent the ordinal of the countable ordinals (the smallest ordinal that is not countable). Since this paper does not deal with uncountable sets (accept indirectly in describing an existing approach to ordinal collapsing in Section 10.5) we can simplify the notation for ω_{CK} to ω_1.

system. These are ordinal notations.

2. There is an algorithm (or computer program) that can determine for every two ordinal notations \(a \) and \(b \) if \(a < b \) or \(a > b \) or \(a = b \). One and only one of these three must hold for every pair of ordinal notations in the system.

3. There is an algorithm that, given an ordinal notation for a limit ordinal, \(a \), will output an infinite sequence of ordinal notations, \(b_i < a \) for all integers \(i \). These outputs must satisfy the property that eventually a notation for every ordinal notation \(c < a \) will be output if we recursively apply this algorithm to \(a \) and to every notation the algorithm outputs either directly or indirectly.

4. Each ordinal notation must represent a unique ordinal as defined in set theory. The union of the ordinals represented by the notations output by the algorithm defined in the previous item must be equal to the ordinal represented by \(a \).

By generalizing induction on the integers, the ordinals are central to the power of mathematics\(^7\). The larger the recursive ordinals that are provably definable within a system the more powerful it is, at least in terms of its ability to solve consistency questions.

Set theoretical approaches to the ordinals can mask the combinatorial structure that the ordinals implicitly define. This can be a big advantage in simplifying proofs, but it is only through the explicit development of that combinatorial structure that one can fully understand the ordinals. That understanding may be crucial to expanding the ordinal hierarchy. Beyond a certain point this is not practical without using computers as a research tool.

2.1 Ordinal functions and fixed points

Notations for ordinals are usually defined with strictly increasing ordinal functions on the countable ordinals. A fixed point of a function \(f \) is an ordinal \(a \) with \(f(a) = a \). For example \(f(x) = n + \alpha \) has every limit ordinal, \(\alpha \), as a fixed point with \(n \) an integer. In contrast \(f(x) = \alpha + n \) is not a fixed point.

The Veblen hierarchy of ordinal notations is constructed by starting with the function \(\omega_x \). Using this function, new functions are defined as a sequence of fixed points of previous functions\([35, 27, 18]\). The first of these functions, \(\varphi(1, \alpha) \) enumerates the fixed points of \(\omega^\alpha \). \(\varphi(1, \alpha) = \varepsilon_\alpha \).

The range and domain of these functions are an expandable collection of ordinal notations defined by C++ class, \texttt{Ordinal}. The computational analog of fixed points in set theory

\(^6\) In set theory the relative size of two ordinals is determined by which is a member, \(\in \), of the other. Because notations must be finite strings, this will not work in a computational approach. An explicit algorithm is used to rank the size of notations.

\(^7\) To prove a property is true for some ordinal, \(a \), one must prove the following.

1. It is true of 0.

2. If it is true for any ordinal \(b < a \) it must be true of the successor of \(b \) or \(b + 1 \).

3. If it is true for a sequence of ordinals \(c_i \) such that \(\bigcup_i c_i = c \) and \(c \leq a \), then it is true of \(c \).
involves the extension of an existing notation system. A fixed point can be thought of as representing the union of all notations that can be obtained by finite combinations of existing operations on existing ordinal notations. To represent this fixed point ordinal, the notation system must be expanded to include a new symbol for this ordinal. In addition the algorithms that operate on notations must be expanded to handle the additional symbol. In particular the recursive process that satisfies item 3 on page 10 must be expanded. The goal is to do more than add a single new symbol for a single fixed point. The idea is to define powerful expansions that add a rich hierarchy of symbolic representations of larger ordinals.

The simplest example of a fixed point is ω the ordinal for the integers. It cannot be reached by any finite sequence of integer additions. Starting with a finite integer and adding ω to it cannot get past ω. $n + \omega = \omega$ for all finite integers n. The first fixed point for the function, ω^x, is the ordinal $\varepsilon_0 = \omega + \omega^\omega + \omega^{\omega^\omega} + \omega^{\omega^{\omega^\omega}} + \ldots$. (The parenthesis in this equation are included to make the order of the exponentiation operations clear. They will sometimes be omitted and assumed implicitly from now on.) ε_0 represents the union of the ordinals represented by notations that can be obtained from finite sequences of operations starting with notations for the ordinals 0 and ω and the ordinal notation operations of successor (+1), addition, multiplication and exponentiation.

2.2 Beyond the recursive ordinals

The class Ordinal is not restricted to notations for recursive ordinals. Admissible ordinals extend the concept of recursive ordinals by considering ordinal notations defined by Turing Machines (TM) with oracles. There is an alternative way to extend the idea of recursive notations for ordinals. The recursive ordinals can be characterized by recursive processes that map integers to either processes like themselves or integers. That is a computer program that accepts an integer as input and outputs either a computer program like itself or an integer.

For such a computer program to represent the structure of an ordinal it must be well founded. This means, if one applies any infinite sequence of integer inputs to the base program, it will terminate. Of course it must meet all the other requirements for a notation system.

A recursive process satisfying the requirements on page 10 is well founded and represents

8 A fixed point for addition is called a principal additive ordinal. Any ordinal $a > 0$ such that $a + b = b$ for all $a < b$ is an additive principle ordinal.

9 A TM oracle is an external device that a TM can query to answer questions that are recursively unsolvable like the computer halting problem. One can assume the existence of an infinite set (not recursive or recursively enumerable) that defines a notation system for all recursive ordinals and consider what further notations are definable by a recursive process with access to this oracle.

10 In mathematics a well founded relationship is one with no infinite descending chains. Any collection of objects ordered by the relationship must have a minimal element.

11 The formulation of this property requires quantification over the reals and thus is considered impredicative. (Impredicative sets have definitions that assume their own existence. Some reals can only be defined by quantifying over the set of all reals and this makes them questionable for some mathematicians.) In a computational approach one need not assume there is a set of all objects satisfying the property. Instead one can regard it as a computationally useful property and build objects that satisfy it in an expanding hierarchy. Impredicativity is replaced with explicit incompleteness.
the structure of a recursive ordinal. It has been shown that the concept of recursive process well founded for infinite sequences of integers can fully characterize the recursive ordinals[31]. One can generalize this idea to recursive processes well founded for an infinite sequences of notations for recursive ordinals. And of course one can iterate this definition in simple and complex ways. In this way one can define countable ordinals \(> \omega_1^{CK} \) as properties of recursive processes. In contrast to recursive ordinal notations, notations for larger ordinals cannot be associated with algorithms that fully enumerate the structure of the ordinal they represent. However it is possible to define a recursive function that in some ways serves as a substitute (see Section 10.3 on limitOrd).

2.3 Uncountable ordinals

The ordinal of the countable ordinals, \(\Omega \), cannot have a computational interpretation in the sense that term is used here. Uncountable ordinals exist in a through the looking glass reality. It is consistent to argue about them because mathematics will always be incomplete. The reals provably definable within a formal system form a definite totality. The formulas that define them are recursively enumerable. They are uncountable from within the system that defines them but they are countable when viewed externally.

Building incompleteness into the system from the ground up in lieu of claiming cardinality has an absolute meaning will, I believe, lead to a more powerful and more understandable mathematics. That is part of the reason I suspect a computational approach may extend the ordinal hierarchy significantly beyond what is possible by conventional proofs. Writing programs that define ordinal notations and operations on them provides powerful tools to help deal with combinatorial complexity that may vastly exceed the limits of what can be pursued with unaided human intelligence. This is true in most scientific fields and there is no reason to think that the foundations of mathematics is an exception. The core of this paper is about C++ code that defines a notation system for an initial fragment of the recursive ordinals and a subset of larger countable ordinals.

The development of this computational approach initially parallels the conventional approach through the Veblen hierarchy (described in Section 7). The C++ class Ordinal is incompletely specified. C++ subclasses and virtual functions allow a continued expansion of the class as described in the next section. The structure of the recursive ordinals defined in the process are fully specified. Ordinals \(\geq \omega_1^{CK} \) are partially specified.

Mathematics is an inherently creative activity. God did not create the integers, they like every other infinite set, are a human conceptual creation designed to abstract and generalize the real finite operations that God, or at least the forces of nature, did create. The anthology, *God Created the Integers*[20], collects the major papers in the history of mathematics. From these and the commentary it becomes clear that accepting any infinite totalities easily leads one to something like ZF. If the integers are a completed totality, then the rationals are ordered pairs of integers with 1 as their only common denominator. Reals are partitions of the rationals into those less than a given real and those greater than that real. This is the Dedekind cut. With the acceptance of that, one is well on the way to the power set axiom and wondering about the continuum hypothesis12. This mathematics is not false or

12The continuum hypothesis is the assertion that the reals have the smallest cardinality greater than the
even irrelevant, but it is only meaningful relative to a particular formal system. Thinking such questions are absolute leads one down a primrose path of pursuing as absolute what is not and cannot be objective truth beyond the confines of a particular formal system.

3 Generalizing Kleene’s \mathcal{O}

This section gives the theoretical basis for the ordinal calculator. It is taken from the paper “Generalizing Kleene’s \mathcal{O} to ordinals $\geq \omega_1^{CK}$.

Abstract

This paper expands Kleene’s notations for recursive ordinals to larger countable ordinals by defining notations for limit ordinals using total recursive functions on nonrecursively enumerable domains such as Kleene’s \mathcal{O}. This leads to a hierarchy related to that developed with Turing Machine oracles or relative recursion. The recursive functions that define notations for limit ordinals form a typed hierarchy. They are encoded as Turing Machines that identify the type of parameters (labeled by ordinal notations) they accept as inputs and the type of input that can be constructed from them. It is practical to partially implement these recursive functional hierarchies and perform computer experiments as an aid to understanding and intuition. This approach is both based on and compliments an ordinal calculator research tool.

3.1 Objective mathematics

Kleene’s \mathcal{O} is part of what I call objective mathematics. \mathcal{O} is a set of recursive ordinal notations defined using finite structures and recursive functions. ω_1^{CK} is the set of all recursive ordinals. The recursive ordinal notations in Kleene’s \mathcal{O} are constructed using computer programs whose actions mirror the structure of the ordinal. Thus the ordinals represented in \mathcal{O} have an objective interpretation in an always finite but possibly potentially infinite universe.

Part of the motivation for generalizing Kleene’s \mathcal{O} to notations for larger countable ordinals is to help to draw the boundaries of unambiguous mathematics that is physically definable and physically meaningful in an always finite but potentially infinite universe. Many others have attempted to draw related lines in various ways. Section 3.1.2 discusses the objectivity of creative divergent processes with important properties that can only be defined by quantification over the reals. Even so these properties are objective and important in an always finite but potentially infinite universe.

The Lowenheim-Skolem theorem proves that the uncountable is ambiguous in any finite or r. e. (recursively enumerable) formalization of mathematics. Any effective formal system, that has a model, must have a countable model. Thus, in contrast to much of mathematics, cardinality of the integers. This means that if the reals can be mapped onto a set (with a unique real for every object in the set) and the integers cannot then that set can be mapped onto the reals with a unique object for every real.
Uncountable sets cannot be given an unambiguous objective definition by finite beings in a finite universe. The uncountable is meaningful and useful as a reflection of mathematics that has yet to be sufficiently explored to be seen as countable and as describing ways that ‘true’ mathematics can always be expanded. Platonic interpretations that see the uncountable as absolute and open to human intuition are questionable.

3.1.1 Avoiding the ambiguity of the uncountable

“I am convinced that the Continuum Hypothesis is an inherently vague problem that no new axiom will settle in a convincingly definite way. Moreover, I think the Platonistic philosophy of mathematics that is currently claimed to justify set theory and mathematics more generally is thoroughly unsatisfactory and that some other philosophy grounded in inter-subjective human conceptions will have to be sought to explain the apparent objectivity of mathematics.”

—Solomon Feferman, from “Does mathematics need new axioms?”

Relationships between all elements of an infinite r. e. sequence are inter-subjective human conceptions, yet they can be logically determined and thus objective. For example an infinite r. e. sequence of finite statements may be all true, have at least one true and one false statement or be all false. Two of these three properties are human inventions in the sense that infinite sequences do not seem to exist physically. If at least one statement is true and another false, this can be proven with a finite argument, but there can be no general way to determine if all statements are true or all are false. Yet these two possibilities are objectively true or false in the sense that every event that determines either statement can be (at least in theory) physical.

Objective mathematics is logically determined by a r. e. sequence of events. ‘Logically determined’ in this context is imprecise philosophy. Only fragments or what is intended can be precisely defined. The definition’s power comes from recursively applying it to generate a precisely defined fragment of mathematics. Consider the question: does a r. e. set of Turing Machine (TM) Gödel numbers have an infinite subset, each element of which has an infinite number of outputs? All the events that determine this statement are r. e. The events are what each TM does at each time step. Generalizations of this question lead to the hyperarithmetic hierarchy.

The uncountable may have an objective countable model in a formal system and thus have a definite interpretation relative to that formal system. It is not a definite thing in an absolute sense. I agree with Weyl and Feferman: “To quote Weyl, platonism is the medieval metaphysics of mathematics; surely we can do better.”

There is, however, an important element of truth in the idea of an abstract Platonic ideal that has become a practical reality in the age of computers. We may not be able to construct a perfect circle but π has been computed to more than a trillion decimal places with a very high probability that it is correct. The Platonic ideal, for sufficiently simple combinatorial mathematics, is approachable to ever higher accuracy with ever higher probability.

Feferman’s note: “CH is just the most prominent example of many set-theoretical statements that I consider to be inherently vague. Of course, one may reason confidently within set theory (e. g., in ZFC) about such statements as if they had a definite meaning.”
3.1.2 Objective mathematics beyond ω_{1}^{CK}

One purpose of tying objective mathematics to an r. e. sequence of events is to insure that
it is meaningful in and relevant to an always finite put possibly potentially infinite universe.
Ideally this mathematics is more than indirectly relevant. For example large cardinal axioms
have been used to derive consistency results and theorems in game theory[23]. Such results
are usually arithmetic. Yet any arithmetic and even hyperarithmetic statement is decidable
from a single axiom of the form n is or is not a notation for a recursive ordinal in Kleene’s
\mathcal{O}. This is true because \mathcal{O} is a Π^1_1 complete set. Using large cardinal axioms to decide these
problems may be clever and important, but it assumes far more than is required.

The phrase physically meaningful implies more than Feferman’s Q1: “Just which mathematical entities are indispensable to current scientific theories?”[14, p 284]. Questions about
divergent evolution in an always finite but unbounded and potentially infinite universe can
require quantification over the reals to state yet they are physically meaningful and even im-
portant to finite beings in such a universe. Consider the question will a single species have
an infinite chain of descendant species. Assume a totally recursive and potentially infinite
universe. Since a single species can, in theory, have an unbounded number of direct descen-
dant species, it can have an unbounded sequence of finite chains of descendants without a
single upper bound on all chains. Yet there may be no single chain of unbounded length.
Thus this problem requires quantification over the reals to state.

For more about the mathematics and philosophy of creative divergent processes see:

- Gödel, Darwin and creating mathematics (FOM posting),
- Mathematical Infinity and Human Destiny (video)[6] and
- What is and what will be (book)[4].

3.2 Kleene’s \mathcal{O}

Kleene’s \mathcal{O} is a set of integers that encode effective notations for every recursive ordinal[22].
From one of these notations, notations for all smaller ordinals are r. e. and those notations
can be recursively ranked. However, there is no general way to decide which integers are
ordinal notation nor to rank an arbitrary pair of notations in \mathcal{O}.

In the following italicized lower case letters (n) represent integers (with the exception of ‘o’). Lower case Greek letters (α) represent ordinals. $\alpha = n_o$ indicates that the α is the
ordinal represented by integer n. The partial ordering of integers, ‘$<_o$’, has the property that
$(\forall m, n \in \mathcal{O}) ((n <_o m) \rightarrow (n_o < m_o))$. The reverse does not hold because not all ordinal
notations are ranked relative to each other.

Assume a Gödel numbering of the partial recursive function on the integers. If y is the
index of a function under this Gödel numbering, y_n is its nth output. Then Kleene’s \mathcal{O} is
defined as follows.

1. ordinal $0 = 1_o$. The ordinal 0 is represented by the integer 1.
2. $(n \in \mathcal{O}) \rightarrow (2^n \in \mathcal{O} \land (2^n)_o = n_o + \text{ordinal} \ 1 \land n <_o 2^n)$.

If n is a notation in \mathcal{O} then 2^n is a notation in \mathcal{O} for the ordinal $n_o + \text{ordinal 1}$ and $n <_{o} 2^n$.

3. If y is total and $(\forall n) (y_n \in \mathcal{O} \land y_n <_o y_{n+1})$ then the following hold.

 (a) $3 \cdot 5^y \in \mathcal{O}$.
 (b) $(\bigcup \{n : n \in \omega\} y_n) = (3 \cdot 5^y)_o$.
 (c) $(\forall n) (y_n <_o 3 \cdot 5^y)$.

The above gives notations for every recursive ordinal. For infinite ordinals the notations are not unique and there is no way to determine if an arbitrary integer is a notation. The ability to decide this is limited by the strength of the formal system applied to the problem.

3.3 \mathcal{P} an extension of Kleene’s \mathcal{O}

The notations in \mathcal{O} can be extended to larger countable ordinals with notations computed from the Gödel numbers of recursive functions that are total on well defined domains that are not r. e. The domains are labeled by ordinal notations. The extended notations are \mathcal{P} and the extended relationship between notations is ‘$<_p$’. Notations for finite ordinals are unchanged. Notations for successor ordinals are defined in the same way, but have different values because notations for limit ordinals differ. This approach is related to the development of countable admissible ordinals using TM oracles or relative recursion[33].

The domains or levels in \mathcal{P} are denoted by ordinal notations as subscripts of \mathcal{P}. Thus the level subscripts start with the sequence 1, 2, 4, ..., 2^n of ordinal notations for the integers. The first level, \mathcal{P}_1, contains notations for the integers. The next level, \mathcal{P}_2, contains notations for the recursive ordinals represented by notations in \mathcal{O}. Levels with a subscript that denotes a successor ordinal are defined with a generalization of \mathcal{O}’s definition. Successor levels use total recursive functions on the notations in the level with a subscript denoting the predecessor ordinal. Limit levels are defined as the union of levels with a smaller ($<_p$) level index. Additional levels are defined by total recursive functions on defined domains that increase so rapidly that the notation computed from them must be used in specifying the minimum \mathcal{P} level they all belong to. The levels are defined in Section 3.3.2.

It is convenient to base limit ordinal notations on the Gödel number of a TM rather than a recursive function. These TMs accept inputs and compute outputs. The inputs and outputs are ordinal notations. The first two outputs are prior to any input and specify the type of parameter accepted (that the TM is total over) and the type of parameter that can be defined using this TM. If n is limit ordinal notation in \mathcal{P}, then the first output of the associated TM is n_a designating the type of parameter accepted (any notation in \mathcal{P}_{n_a}) and the second output is n_b designating the minimum level in \mathcal{P} that n is in. For notations of successor ordinals, the level index of valid inputs is meaningless. The parameter type or input level of finite successor notations in \mathcal{P} is defined to be 1. It is in \mathcal{P}_1. For infinite successor notations, the input level index is the same as it is for the notation for the largest limit ordinal from which this successor notation is computed.
3.3.1 \(\mathcal{P} \) conventions

The following conventions are used in defining \(\mathcal{P} \).

- A limit or successor notation is one that represents a limit or successor ordinal.
- Greek letters (\(\alpha, \beta, \gamma, \ldots \)) denote countable ordinals.
- Italicized lower case letters (\(n, m, l, \ldots \)) (except \(a, b \) and \(p \)) denote integer ordinal notations. Base 10 integers (1,2,...) are notations for ordinals and not ordinals themselves except in a phrase like “the ordinal 0”. Thus, as in Kleene’s definition of \(\mathcal{O} \), 1 represents the ordinal 0 and 4 represents the ordinal 2.
- The subscript ‘\(p \)’ in \(n_p \) implies \(n \in \mathcal{P} \) and \(n_p \) denotes the ordinal represented by \(n \) under the assumed G"odel numbering of TMs and the map in Section 3.3.2 between TM G"odel numbers and ordinal notations. Only notations for finite ordinals are independent of this G"odel numbering.
- \(\mathcal{P} \) is defined in levels indexed by members of \(\mathcal{P} \) using subscripts as in \(\mathcal{P}_r \). Levels are cumulative. \(\mathcal{P}_r \) includes all members of \(\mathcal{P}_s \) with \(s < p_r \). A level is an input domain for TMs used in defining notations for a limit ordinals.
- If \(n \) is a notation for a limit ordinal then the first output of the TM whose G"odel number was used in computing \(n \) is \(n_a \) and \(\mathcal{P}_{n_a} \) is the domain or input level for this TM. The second output, \(n_b \), labels the type of this notation as an input. All finite ordinal notations, \(m \), have a predefined value for \(n_b = 1 \). The \(a \) subscript has no meaning for successor notations in \(\mathcal{P} \). The notation for an infinite successor ordinal, \(s \), denotes the sum of a limit ordinal, \(l \), and a finite ordinal. \(s_b = l_b \) by definition.
- The TM that defines limit notation \(n \) maps notations for ordinals in \(\mathcal{P}_{n_a} \) to notations for ordinals in \(\mathcal{P}_{n_b} \). The union of all ordinals represented by notations in the range of this TM, over the domain, \(\mathcal{P}_{n_a} \), is the ordinal represented by \(n \).
- If \(m \in \mathcal{P} \), it is a valid input to the TM used to define the ordinal notation \(n \) iff \(m_b < p n_a \).
- \(L(r) \) indicates that \(r \) is a notation for a limit ordinal.
- If \(L(n) \), then \(T_n \) is the G"odel number of the TM used in defining \(n \).
- If \(k \) a valid input to \(T_n \), then \(T_n(k) \) is the output of \(T_n \) for input \(k \).

3.3.2 \(\mathcal{P} \) definition

\(\mathcal{P} \) and ‘\(<_p \)’ are defined in levels, \(\mathcal{P}_r \), as described below.

1. ordinal 0 = \(1_p \) \(\land 1 \in \mathcal{P}_1 \).
 The notation for the ordinal 0 is 1. It is a member of \(\mathcal{P}_1 \), the first level in the hierarchy.
2. \((s <_p r \land n \in \mathcal{P}_s) \rightarrow (n \in \mathcal{P}_r)\).

 A member of \(\mathcal{P}_s\) also belongs to \(\mathcal{P}_r\) if \(s <_p r\).

3. \((n \in \mathcal{P}_r \land \beta = n_p) \rightarrow (2^n \in \mathcal{P}_r \land \beta + \text{ordinal } 1 = (2^n)_p \land n <_p 2^n)\).

 The notation for the successor of the ordinal represented by \(n\) is \(2^n\). If \(n \in \mathcal{P}_r\) then \(2^n \in \mathcal{P}_r\) and \(n <_p 2^n\).

4. \((\text{ordinal } n \in \omega) \equiv (\text{ordinal } n = (2^n)_p \land 2^n \in \mathcal{P}_1)\).

 \(\mathcal{P}_1\) is the set of notations for the integers or finite ordinals. The notation \(2^n\) represents the finite ordinal \(n\).

5. The following defines a notation \(n\) for a limit ordinal in \(\mathcal{P}_{2r}\) using the Gödel number of the TM, \(T_n\), that accepts inputs in \(\mathcal{P}_r\).

 Note \(n = 3 \cdot 5^{T_n}\). This is the relationship between a limit ordinal notation and the Gödel number used in constructing the notation.

 (a) Before accepting inputs, \(T_n\) outputs the labels \(r\) and \(2^r\).

 (b) \((\forall m \in \mathcal{P}_r)\ (T_n(m) \in \mathcal{P}_{2r})\).

 The output of \(T_n\) for a valid input is in \(\mathcal{P}_{2r}\). Note \(\mathcal{P}_{2r}\) contains all elements in \(\mathcal{P}_r\) by Rule 2.

 (c) \((\forall m \in \mathcal{P}_r)(\exists k \in \mathcal{P}_r)\ (m <_p T_n(k))\).

 The range of \(T_n\) is not bounded in \(\mathcal{P}_r\) and thus its level index is greater than \(r\).

 (d) \((\forall u, v \in \mathcal{P}_r)\ ((u <_p v) \rightarrow (T_n(u) <_p T_n(v)))\).

 \(T_n\) must map notations for ordinals of increasing size to notations for ordinals of increasing size.

 If 5a, 5b, 5c and 5d above hold then 5e, 5f and 5g below are true.

 (e) \(n = 3 \cdot 5^{T_n} \land n \in \mathcal{P}_{2r}\).

 The ordinal notation, \(n\), based on the Gödel number \(T_n\) belongs to \(\mathcal{P}_{2r}\).

 (f) \(n_p = \bigcup\{s : s \in \mathcal{P}_r\}(T_n(s))_p\).

 The ordinal represented by \(n\) is the union of the outputs of \(T_n\) for all valid inputs.

 (g) \((\forall s \in \mathcal{P}_r)\ (T_n(s) <_p n)\).

 The output of \(T_n\) for any element, \(m\), in its range satisfies \(m <_p n\) or \(m_p < n_p\).

6. \(L(r) \rightarrow (\mathcal{P}_r = \bigcup\{s : s <_p r\} \mathcal{P}_s)\).

 If \(r_p\) is a limit ordinal then \(\mathcal{P}_r\) is the unions of of \(\mathcal{P}_s\) for \(s <_p r\).

7. \((\mathcal{P}_r' = (\bigcup\{m : m \in \mathcal{P}_r\} m)) \land ((\forall m \in \mathcal{P}_r)\ m <_p \mathcal{P}_r')\).

 The notation for the union of all ordinals represented by notations in \(\mathcal{P}_r\) is written as \(\mathcal{P}_r'\). Every ordinal notation in \(\mathcal{P}_r\) is \(<_p \mathcal{P}_r'\). Note \(\mathcal{P}_{2r}\) contains a notation for the union of ordinals represented in \(\mathcal{P}_r\). This notation is constructible from the Gödel number of any TM that outputs \(r\) followed by \(2^r\) and then copies its input to its output.
8. The limit of ordinal notations definable from the above is: \(\bigcup \mathcal{P}_2', \mathcal{P}_p', \mathcal{P}'_p', \ldots \). It is straightforward to construct a TM that outputs this sequence of notations. However, only rule 5 defines notations for limit ordinals and it only defines these in a specified range, \(\mathcal{P}_2' \). A rule is needed to define \(\mathcal{P}_v \) from an r. e. set of ordinal notations where \(v \) is not previously defined.

The second output of the TM used to construct a notation for the above sequence must use its own Gödel number because the sequence includes all notations in levels indexed with notations for smaller ordinals. It is possible to construct this, but a simpler solution is to define that an initial second label output of 0 denotes the limit ordinal represented by the notation constructed from this TM’s Gödel number.

If \(T_n \) meets the constraints listed below, this Gödel number can be used to construct an ordinal notation as defined below.

(a) The first two outputs of \(T_n \) are \(r \) with \(r \in \mathcal{P} \) followed by zero. The latter indicates a self reference to notation \(n \).

(b) \((\forall m \in \mathcal{P}_r)(\forall k <_p m) (T_n(k) <_p T_n(m))\).

\(T_n \) is a strictly increasing function on its domain.

(c) \((\forall m \in \mathcal{P}_r) (T_n(2^m) \geq_p \mathcal{P}'_{T_n(n)})\).

This puts a lower bound on the rate of increase of \(T_n \). This rapid increase insures that the ordinal notations computed from valid parameters of \(T_n \) is consistent with a second output label of 0 from \(T_n \).

If 8a, 8b and 8c above hold then 8d, 8e and 8f below hold.

(d) \(n = 3 \cdot 5^{T_n} \land n \in \mathcal{P}_n \).

The notation for the ordinal defined by \(T_n \) is \(3 \cdot 5^{T_n} \). \(n \) is the index of the range, \(\mathcal{P}_n \), of the TM that defines \(n \).

(e) \(n_p = \bigcup \{s : s \in \mathcal{P}_r\}(T_n(s))_p \).

The ordinal represented by \(n \) is the union of the outputs of \(T_n \) for all inputs in its domain.

(f) \((\forall s \in \mathcal{P}_r) (T_n(s) <_p n)\).

The output, \(m \), of \(T_n \) for any element in its range satisfies \(m <_p n \).

3.3.3 Summary of rules for \(\mathcal{P} \)

The above definitions 1 through 8 define integer notations for ordinals as summarized below.

- The ordinal 0 has 1 as its notation (1).
- Notations in \(\mathcal{P}_s \) are in \(\mathcal{P}_r \) if \(s <_p r \) (2).
- The successor notation for \(n \) is \(2^n \) (3).
• \(\mathcal{P}_1 \) contains the notations for the integers (4).

• Limit notations in \(\mathcal{P}_{2^r} \) can be constructed from recursive functions whose range is \(\mathcal{P}_r \) (5).

• \(\mathcal{P}'_r \) is a notation for the union of all ordinal represented by notations in \(\mathcal{P}_r \) (7).

• \(\mathcal{P}_r \) with \(r \) a limit represents the union of all ordinals with notations in \(\mathcal{P}_s \) for \(s < _p r \) (6).

• The union of \(\mathcal{P}'_2, \mathcal{P}'_{2'}, \mathcal{P}'_{2''}, \ldots \), and the union of other rapidly increasing TM outputs for increasing inputs can be defined using a domain, \(\mathcal{P}_r \), and a TM, \(T_n \), on that domain. This rule defines both a notation \(v \) and a level \(\mathcal{P}_v \) such that \(v \in \mathcal{P}_v \) and \(v \) is not a member of any level with a smaller subscript. (8).

Although based on Kleene’s approach, this notation system has different and weaker properties to allow for notations of ordinals \(\geq \omega_1^{CK} \). Perhaps the most important is the logically required constraint that notations for ordinals \(\geq \omega_1^{CK} \) no longer allow the recursive enumeration of notations for all smaller ordinals. Non unique notations are defined for all smaller ordinals but there is no r. e. subset of these that represent all smaller ordinals. The exceptions are \(\mathcal{P}_1 \) (the integers) and members of \(\mathcal{P}_2 \) (notations for the recursive ordinals).

3.4 \(\mathcal{Q} \) an extension of \(\mathcal{O} \) and \(\mathcal{P} \)

\(\mathcal{P} \) seems to exhaust the idea of a typed hierarchy of domains of ordinal notations labeled and ordered by ordinal notations and defined by total recursive functions on those domains. Of course one can always add notations for countable ordinals inaccessible in an existing formalization, but more powerful extensions are desirable. This section develops the idea of a hierarchy of hierarchies and its generalizations. \(\mathcal{Q} \), is based on \(\mathcal{O} \) and \(\mathcal{P} \). It labels levels with a sequence of ordinal notations supporting a hierarchy of hierarchies and beyond.

3.4.1 Hierarchies of ordinal notations

Kleene’s \(\mathcal{O} \) and the Veblen hierarchy[35, 27, 18, 29] represent two complimentary ways in which a hierarchy of ordinal notations can be developed. Techniques like the Veblen hierarchy provide recursive ordinal notations for an initial segment of the recursive ordinals. In contrast Kleene’s definition of \(\mathcal{O} \) assigns integer notations for all recursive ordinals with no general way of determining which integers are notations or which notations represent the same ordinal.

The hierarchy of countable ordinals cannot be assigned notations as Kleene’s \(\mathcal{O} \) assigns notations for the recursive ordinals because the union of all countable ordinals is not countable. However the two ways of expanding the countable ordinal notations can extend past \(\omega_1^{CK} \). Any r. e. set of notations that reaches \(\omega_1^{CK} \) will have gaps and any non r. e. complete set of notations will have a countable upper bound on the ordinals represented.

The first gap in the r. e. set of notations starts at the limit of the recursive ordinals represented in the system and may end at \(\omega_1^{CK} \). In contrast \(\mathcal{P} \) in Section 3.3.2 assigns notations to all ordinals less than an ordinal much larger then \(\omega_1^{CK} \) at the cost of not being
able to decide in general which integers are ordinal notations. The ordinal calculator\cite{7,8} defines a r. e. set of ordinal notations that go beyond ω^CK_1 with gaps. The ordinal calculator project was one motivation for the development of \mathcal{P}. \mathcal{Q} establishes a theoretical base for expanding the ordinal calculator.

3.4.2 \mathcal{Q} syntax

Many of the conventions in Section 3.3.1 are modified or augmented as described in Section 3.4.3. The notations in Sections 3.3.2 are reformulated in a more general form and expanded in Section 3.4.5.

Notations in \mathcal{Q} are character strings that encode TM Gödel numbers and other structures. This replaces the integer coding conventions used by Kleene. The strings can be translated to integers using character tables like those for Unicode or ASCII.

‘lb’ is the syntactic element that labels a domain or level. Labels in \mathcal{Q} play a similar role as level indices such as r in \mathcal{P}_r. However labels in \mathcal{Q} are lists of ordinal notations usually enclosed in square brackets. ‘od’ is the syntactic element for an arbitrary ordinal notation. Either lb or od can be followed by x (as in od$_x$) where x is a letter or digit to indicate a particular instance of a label or ordinal notation.

3.4.2.1 \mathcal{Q} label (lb) syntax

The two labels output by TMs whose Gödel numbers are used in notations for \mathcal{Q} (Section 3.4.5) are lists of notations in \mathcal{Q} separated by commas and enclosed in square brackets. These labels implicitly define levels (or function domains) in \mathcal{Q}. The explicit syntax for a level with label lb is $\mathcal{Q}[lb]$. (Multiple square brackets enclosing the notation list in a label can be changed to 1.)

The label zero, used as a self reference in Rule 8 in Section 3.3.2, is replaced by the character string ‘SELF’. A notations with a range level label with a list containing a single notation ‘SELF’ is defined as the zero label is defined in \mathcal{P}. The ordinal notation is its own range level. The definition for other labels is in Rule 9 in Section 3.4.5.

Finite ordinal notations are base 10 integers starting with 0 for the empty set. They are the only notations without at least one explicit label. (For infinite successor ordinals the label of the type of input accepted is meaningless.) Some examples of levels in \mathcal{Q} defined using notations for finite ordinals are:

- $\mathcal{Q}[0]$ contains notations for finite ordinals, (those represented in \mathcal{P}_1),
- $\mathcal{Q}[1]$ contains notations for recursive ordinals (those represented in \mathcal{O} and \mathcal{P}_2),
- $\mathcal{Q}[2]$ contains notations for ordinals represented in \mathcal{P}_4,
- $\mathcal{Q}[3]$ contains notations for ordinals represented in \mathcal{P}_8,
- $\mathcal{Q}[1,0]$ contains notations for ordinals represented in \mathcal{P} and
- $\mathcal{Q}[1,0,0]$ contains notations in a hierarchy of hierarchies (this is made precise in Section 3.4.5).
3.4.2.2 Q ordinal (od) syntax The notation for a finite ordinal is a base 10 integer. The notation syntax for an infinite ordinal is ‘[lb₁][lb₂] n + m’. The ‘+ m’ is not used for limit ordinal notations. m is a base 10 integer indicating the mth successor of the limit ordinal represented by the part of the notation before ‘+’. n designates the TM with Gödel number n. lb₁ is an input label. It designates the type of inputs that are legal for this TM (they must be in Q[lb₁]) and lb₂ designates the type of this notation as a possible input to a TM in other notations. Thus Q[lb₂] is the first level that contains the notation, ‘[lb₁][lb₂] n’.

The explicit labels are redundant because TM n must write out [lb₁][lb₂] before accepting input.

3.4.3 Q conventions

The following include modified versions of the conventions from Section 3.3.1 with ‘P’ and ‘p’ replaced by ‘Q’ and ‘q’ and other changes. There are also new conventions.

- A limit or successor notation represents a limit or successor ordinal.
- Greek letters (α, β, γ, ...) denote countable ordinals.
- **Bold face** text is used for syntactic elements ‘lb’ and ‘od’ that can be expanded to a string of characters. ‘lb’ (label) syntax is defined in Section 3.4.2.1 and ‘od’ (ordinal notation) syntax is defined in Section 3.4.2.2. Instances of these syntactic elements are represented as ‘lbₓ’ and ‘odₓ’ where x can be a letter or an integer.
- Tₙ is the TM whose Gödel number is n. If odₓ is a valid input to Tₙ then Tₙ(odₓ) is the ordinal notation computed from this input.

This is defined differently in Section 3.3.1 where the n in Tₙ is the ordinal notation constructed from the TM Gödel number. In that section T₃₅ₙ is the TM with Gödel number n if 3·5ⁿ is an ordinal notation.

- Italicized lower case letters (n, m, l, ... except a, b, q, s and t) denote integers.
- If od₁ = [lb₁][lb₂]n + m with the ‘+m’ is omitted if m = 0, then the following are defined.

 od₁ₐ = [lb₁].
 od₁ₖ = [lb₂].
 od₁ₜ = n.
 od₁ₛ = m.
 od₁q = the ordinal represented by this notation.

- Finite ordinals are represented as base 10 integers. Their labels are both defined to be zero.

- od₁ <ₚ od₂ indicates the relative ranking of the two notations in Q. It implies that od₁q < od₂q. The reverse is not always true since not all pairs of notations in Q are ordered by <ₚ.
• od_1 is a valid input to T_{od_2} iff $\text{od}_1 \prec q \text{od}_2$.

• The subscript ‘q’ in od_1q implies $\text{od}_1 \in Q$ and od_1q denotes the ordinal represented by od_1 under an assumed Gödel numbering of TMs.

• Q is defined in labeled levels written as $Q[lb]$. These levels define valid inputs for a TM whose Gödel number is part of an ordinal notation. Such a TM maps notations for ordinals to notations for ordinals. The union of all ordinals represented by notations in the range of this TM, over the domain of valid inputs, is the ordinal represented by the notation.

• $\text{lb}_1 + m$ is a modified version of lb_1 with m added to its least significant notation. This is used in Rule 7 in Section 3.4.5, which is a relative version of Rule 5 in Section 3.3.2.

• SELF signifies an ordinal notation that uses its own Gödel number in the second output label. SELF can only occur in the second label as the least significant notation. The rest of the second label must be the same as the first label as in: $[\text{od}_1, ..., \text{od}_m, \text{od}_x][\text{od}_1, ..., \text{od}_m, \text{SELF}]n$.

• $\text{od}_1 + k$ is the kth successor of od_1.

• The notation for the union of all ordinal notations in $[\text{lb}_1]$ is ‘$Q[\text{lb}_1]$’. A notation for this ordinal is also given by $[\text{lb}_1][\text{lb}_1 + 1]n$ where T_n outputs the two labels and computes and outputs the identity function on any inputs.

• $L(\text{od}_1)$ indicates that od_1 is a notation for a limit ordinal.

• If $\text{od}_1 \prec q \text{od}_2$ and $L(\text{od}_1)$ then $T_{\text{od}_2}(\text{od}_1)$ is the notation output from the TM encoded in od_2 with input notation od_1. This can also be written as $\text{od}_2(\text{od}_1)$.

• $[\text{lb}_x]_m$ is the notation in the mth position of lb_x. The least significant position is 0.

• $L(n, [\text{lb}_x])$ means the nth least significant notation in lb_x denotes a limit ordinal. Note the least significant notation in a label is at position $n = 0$.

• $L([\text{lb}_x]) = L(0, [\text{lb}_x])$ and means the least significant notation in lb_x denotes a limit ordinal.

• $S(n, [\text{lb}_x])$ means the nth least significant notation in lb_x represents a successor ordinal and all less significant notations in lb_x are 0.

• $R(n, [\text{lb}_x], \text{od}_y)$ is the syntactic substitution of the nth least significant notation in $[\text{lb}_x]$ with od_y.

• $R([\text{lb}_x], \text{od}_y) = R(0, [\text{lb}_x], \text{od}_y)$ and is the syntactic substitution of the least significant notation in $[\text{lb}_x]$ with od_y.

• $[\text{lb}_x]_n$ is the nth least significant notation in lb_x. The least significant position is $[\text{lb}_x]_0$.

23
• $||\mathbf{lb}_x||$ is the maximum number of notations that occur as text in the notation fragment \mathbf{lb}_x (including notations equal to zero) or, if it is greater, the value of $||\mathbf{lb}_y||$ where \mathbf{lb}_y ranges over all the labels in the notations contained in \mathbf{lb}_x. Thus it is applied recursively down to finite labels.

• $Z([\mathbf{lb}_x])$ is the number of consecutive zeros in \mathbf{lb}_x starting at the least significant notation. Following are some examples.

 $$Z([m, 0]) = 1.$$
 $$Z([12, 0, 0, 11, 1, 0, 0, 0]) = 4.$$
 $$Z([76, 0, 0, 0, 0, 0, 0, 1]) = 0.$$

• $A(n, [\mathbf{lb}_1], [\mathbf{lb}_2])$ means \mathbf{lb}_1 and \mathbf{lb}_2 have the same most significant notations starting at position n. $A(0, [\mathbf{lb}_1], [\mathbf{lb}_2])$ means they agree on all positions.

• $M([\mathbf{lb}_1])$ is the position (the least significant position is 0) of the most significant nonzero notation in \mathbf{lb}_1.

• $V(m, [\mathbf{lb}_1]) \equiv (Z([\mathbf{lb}_1]) = m \land M([\mathbf{lb}_1]) = m \land [\mathbf{lb}_1]_m = 1)$. $V(m, [\mathbf{lb}_1])$ means $[\mathbf{lb}_1]$ is of the form $[1, 0, ..., 0]$ with m consecutive least significant notations of zero and a most significant notation of 1 at position m.

• Q_L, the set of all labels used in Q. Thus it contains all finite sequences of notations, every element of which is ranked ($<_q$) against every other element.

3.4.4 Ranking labels (\mathbf{lb}) in Q

The level labels in P are ordinal notations ranked by $<_p$. In Q, level labels are a list of ordinal notations. These labels are ranked using $<_q$ augmented by other constraints. For example all members of O represent ordinals $<_q \omega_1^{CK}$. This constraint is generalized in Rule 1 below.

The following rules determine when the relationship $[\mathbf{lb}_1] <_q [\mathbf{lb}_2]$ is defined and, if defined, what its truth value is.

1. $V(m, [\mathbf{lb}_1]) \rightarrow (\forall \mathbf{lb}_2 \in Q_L)((||\mathbf{lb}_2|| \leq m) \rightarrow ([\mathbf{lb}_2] <_q [\mathbf{lb}_1]))$

 Every label of the form $[1, 0, ..., 0]$ with $m + 1$ notations is greater than ($>_q$) every notation that has at most m notations such that each of these ordinal notations has at most m notations in their two labels and this is true recursively down to integer notations.

2. If \mathbf{lb}_1 and \mathbf{lb}_2 agree except for the the mth position and $[\mathbf{lb}_1]_m <_q [\mathbf{lb}_2]_m$ then $[\mathbf{lb}_1] <_q [\mathbf{lb}_2]$.

3. $([\mathbf{lb}_1] <_q [\mathbf{lb}_2] \land [\mathbf{lb}_2] <_q [\mathbf{lb}_3]) \rightarrow ([\mathbf{lb}_1] <_q [\mathbf{lb}_3])$.

 $<_q$ on labels is transitive.

4. $[\mathbf{lb}_1] <_q [\mathbf{lb}_2]$ if all four of the following conditions hold.
(a) $Z(m, [\text{lb}_2])$

The least significant m notations in lb_2 are zero.

(b) $A(m + 1, [\text{lb}_1], [\text{lb}_2])$.

lb_1 and lb_2 have the same notations at position $m + 1$ and all more significant positions.

(c) $[\text{lb}_1]_m <_q [\text{lb}_2]_m$.

The notations in position m in lb_1 is less than the notation in position m in lb_2.

(d) $(\forall\{k: 0 \leq k < m\}) [[\text{lb}_1]_k] <_q [\text{lb}_2]_k$.

For all consecutive least significant zero notations in lb_2, the label containing the single notation in the same position in lb_1 is $[[\text{lb}_1]_k]$, and $[[\text{lb}_1]_k] <_q [\text{lb}_2]$.

3.4.5 Q definition

The definition of Q is based in part on the rules for P in Section 3.3.2. Q and '$_q$' are defined in stages, $Q[\text{lb}_x]$. $Q[0]$ contains base 10 integer notations for the finite ordinals. The ordinals represented by notations in \mathcal{O} are those with notations in $Q[1]$. The ordinals represented by notations in P are those with notations in $Q[1, 0]$.

Q contains the notations defined below.

1. Notations for finite ordinals, starting with the empty set, are base 10 integers. $Q[0]$ contains these notations.

2. The syntax for level labels (lb) and ordinal notations (od) are in sections 3.4.2.1 and 3.4.2.2. The '$_q$' partial relationship between labels is given in Section 3.4.4. An additional requirement for a limit ordinal notation od_1 is $\text{od}_1 <_q \text{od}_1 + 1$.

3. Q_L is the set of all labels used in defining Q. Q_L contains all finite sequences of ordinal notations such that for any two labels in a sequence, lb_1 and lb_2, the relationship $\text{lb}_1 <_q \text{lb}_2$ is defined.

4. $(\forall\text{lb}_x \in Q_L)(\forall\text{od}_1 \in Q[\text{lb}_x]) ((\text{od}_1 + 1) \in Q[\text{lb}_x] \land \text{od}_1 <_q (\text{od}_1 + 1))$.

An ordinal is $<_q$ its successor and they both belong to the same level.

5. The notation for the union of all ordinals represented in $Q[\text{lb}_1]$ is $Q[\text{lb}_1]'$. A notation for this ordinal is also given by $[\text{lb}_1][\text{lb}_1 + 1]^n$ where T_n outputs $[\text{lb}_1][\text{lb}_1 + 1]$ and then copies each input as output. This is similar to the definition in Rule 7 in Section 3.3.2.

6. $([\text{lb}_1] <_q [\text{lb}_2] \land \text{od}_n \in Q[\text{lb}_1]) \rightarrow (\text{od}_n \in Q[\text{lb}_2])$.

If $[\text{lb}_1] <_q [\text{lb}_2]$, any member of $Q[\text{lb}_1]$ belongs to $Q[\text{lb}_2]$.

7. The following defines limit ordinal notations in $Q[\text{lb}_1 + 1]$ using notations in $Q[\text{lb}_1]$. It is a relativized version of Rule 5 in Sections 3.3.2. If T_n meets the following constraints it can be used to define ordinal notation $[\text{lb}_1][\text{lb}_1 + 1]^n$ in $Q[\text{lb}_1 + 1]$.

3.4.5 Q definition
8. \(Z([\text{lb}_x]) = m \land L(m, [\text{lb}_x]) \rightarrow (Q[\text{lb}_x] = \bigcup \{\text{od}_x : \text{od}_x <_q [\text{lb}_x]_m\} Q[R(m, [\text{lb}_x], \text{od}_x)]) \)

If the least significant non-zero notation in \(\text{lb}_x \) is \(\text{od}_y \) in the \(m \)th position and it represents a limit ordinal, then \(Q[\text{lb}_x] \) is the union of levels in which \(\text{od}_y \) in the \(m \)th position is replaced by all notations \(\text{od}_x <_q \text{od}_y \).

9. A relative version of Rule 8 in Section 3.3.2 is needed. There is no restriction on the first label. The second label must agree with the first label except the least significant notation is replaced by \texttt{SELF}. This use of \texttt{SELF} requires that the function that defines this notation increase rapidly enough that its G"odel number can be used to label its output.

If an ordinal notation of the form \(\text{od}_1 = [\text{lb}_1][R([\text{lb}_1], \text{SELF})]n \) meets the conditions listed below than it is an ordinal notation in \(Q[\text{od}_1] \) as defined below.

(a) \(T_n \) outputs \([\text{lb}_1][R([\text{lb}_1], \text{SELF})] \) before accepting input.

(b) \((\forall \text{od}_x, \text{od}_y \in Q[\text{lb}_1])(\text{od}_x <_q \text{od}_y) \rightarrow (T_n(\text{od}_x) <_q T_n(\text{od}_y))) \)

\(T_n \) is strictly increasing over its domain.

(c) \((\forall \text{od}_x \in Q[\text{lb}_1]) (T_n(\text{od}_x + 1) \geq Q[T_n(\text{od}_x)]') \)

The insures that \(T_n \) increased fast enough that the \texttt{SELF} label applies.
(d) \(\text{od}_1 \in Q[\text{od}_1] \).

The notation for \(\text{od}_1 \) labels the level it belongs to.

(e) \(\text{od}_1 = \bigcup \{ \text{od}_x : \text{od}_x \in Q[\text{lb}_1] \} (T_n(\text{od}_x))_q \).

\(\text{od}_1 \) represents the union of the ordinals represented by notations \(T_n(\text{od}_x) \) for \(\text{od}_x \) in \(Q[\text{lb}_1] \).

(f) \((\forall \text{od}_x \in Q[\text{lb}_1]) (T_n(\text{od}_x) <_q \text{od}_1) \).

For all ordinal notations, \(\text{od}_x \), in \(Q[\text{lb}_1] \) the notation \(T_n(\text{od}_x) <_q \text{od}_1 \).

10. \((S(m, [\text{lb}_1]) \wedge m > 0) \rightarrow (Q[\text{lb}_1] = \bigcup \{ [\text{lb}_x] : [\text{lb}_x] <_q [\text{lb}_1] \} Q[\text{lb}_x]) \)

If \(\text{lb}_1 \) is a label with one or more consecutive least significant notations of zero and a least significant nonzero notation that is a successor then \(Q[\text{lb}_1] \) is the union of all levels \(Q[\text{lb}_x] \) with \([\text{lb}_x] <_q [\text{lb}_1] \).

3.4.6 Summary of rules for \(Q \)

- \(Q[0] \) contains notations for the finite ordinals (1).
- The syntax for ordinal notations and labels is referenced. The rules for label ranking are referenced. The rule that in every notation \(\text{od}_x, \text{od}_x <_q \text{od}_x \) is added. (2).
- \(Q_L \), the set of all labels used in \(Q \), contains all finite sequences of notations, every element of which is ranked \((<_q)\) against every other element (3).
- An ordinal is \(<_q \) its successor and they both belong to the same level (4).
- \(Q[\text{lb}_1] \)’ is the union of notations in \(Q[\text{lb}_1] \) (5).
- Levels inherit notations from all lower levels. (6).
- Limit ordinal notations in levels with a label whose least significant notation is a successor are defined using recursive functions on the predecessor level. (7).
- Levels with a label whose least significant nonzero notation represents a limit ordinal are defined (8).
- Notations with labels that reference themselves and the corresponding levels are defined (9).
- Levels with a label that has one or more least significant zeros and a least significant nonzero successor notation are defined. (10).
3.5 Conclusions

In set theory infinite ordinals are treated as objects. However infinite sets do not seem to exist in our universe. They are Platonic abstractions that have long been questioned perhaps from the dawn of mathematical thinking about the unbounded. In our universe even the countable infinite appears to be unreachable and the uncountable is irredidibly ambiguous as shown by the Lowenheim-Skolem theorem. By expanding the ordinal hierarchy as computable notations on non recursive but objectively defined domains, the ambiguity of the uncountable is avoided. The Gödel numbers of TMs with a well defined property must form a countable set. Of course the properties can be defined in ways that are ambiguous or inconsistent. There is no way to guarantee against such mistakes, but they are mistakes not philosophical issues.

Mathematicians can use whatever formalism and whatever intuitive abstractions help as long as the results are derivable in a widely accepted formalism. Currently such formalisms include ZFC set theory. This is not likely to change until and unless a more philosophically conservative formalism is more powerful than ZFC at least in deciding arithmetical questions.

One advantage of ordinal notations, as developed here, is that they can be explored with computer code. This allows the manipulation of combinatorial structures of complexity well beyond the capabilities of the unaided human mind. This differs from the substantial efforts at automated theorem proving and computer verification of existing proofs. Both efforts are important, but they focus on automating and verifying the work that mathematicians do now.

I conjecture that all mathematics that is unambiguous in an always finite but potentially infinite universe can be modeled by recursive processes on a logically determined domain. Here recursive processes include single path and divergent recursive processes that explore all possible paths. If this is true than, to some degree, the foundation of mathematics can become an experimental science.

4 Ordinal Calculator Overview

This section is taken from a paper that gives an overview of the ordinal calculator.

Abstract

An ordinal calculator has been developed as an aid for understanding the countable ordinal hierarchy and as a research tool that may eventually help to expand it. A GPL licensed version is available in C++. It is an interactive command line calculator and can be used as a library. It includes notations for the ordinals uniquely expressible in Cantor normal form, the Veblen hierarchies and a form of ordinal projection or collapsing using notations for countable admissible ordinals and their limits. The calculator does addition, multiplication and exponentiation on ordinal notations. For a recursive limit ordinal notation, \(\alpha \), it can list an initial segment of an infinite sequence of notations such that the union of the ordinals represented by the sequence is the ordinal represented by \(\alpha \). It can give the relative size of any two notations and it determines a unique notation for every ordinal represented. Input is in plain text. Output can be plain text and/or \LaTeX{} math mode format. This approach is motivated by a philosophy of
mathematical truth that sees *objectively true* mathematics as connected to properties of recursive processes. It suggests that computers are an essential adjunct to human intuition for extending the combinatorially complex parts of objective mathematics.

Introduction

An ordinal calculator has been developed as an aid for understanding the countable ordinal hierarchy and as a research tool that may eventually help to expand it. A GPL licensed version is available in C++\(^{15}\). It is an interactive command line calculator and can be used as a library. It includes notations for the ordinals uniquely expressible in Cantor normal form (that are \(< \varepsilon_0\)), the Veblen hierarchies and a form of ordinal projection or collapsing using notations for countable admissible ordinals and their limits (see section 4.5).

The calculator does addition, multiplication and exponentiation on ordinal notations. For a recursive limit ordinal notation, \(\alpha\), it can list an initial segment of an infinite sequence of notations such that the union of the ordinals represented by the sequence is the ordinal represented by \(\alpha\). It can give the relative size of any two notations and it determines a unique notation for every ordinal represented. Input is in plain text. Output can be plain text and/or \(\LaTeX\) math mode format.

Loosely speaking there are two dimensions to the power of axiomatic mathematical systems: definability and provability. The former measures what structures can be defined and the latter what statements about these structures are provable. Provability is usually expanded by extending definability, but there are other ways to expand provability. In arguing for the necessity of large cardinal axioms a number of arithmetic statements have been shown to require such axioms to decide\(^{17}\). This claim is relative to the linear ranking of generally accepted axiom systems. However any arithmetic (or even hyperarithmetic) statement can be decided by adding to second order arithmetic a finite set of axioms that say certain integers do or do not define notations for recursive ordinals in the sense of Kleene’s \(O\)\(^{16}\). This follows because Kleene’s \(O\) is a \(\Pi^1_1\) complete set\(^{18}\) and a TM (Turing machine) with an oracle that makes a decision must do so after a finite number of queries.

Large cardinal axioms are needed to decide some questions because it has not been possible to construct a sufficiently powerful axiom system about notations for recursive ordinals. This can change. Any claim that large cardinal axioms are needed to decide arithmetic statements is relative to the current state of mathematics.

Large cardinal axioms seem to implicitly define large recursive ordinals that may be beyond the ability of the unaided human mind to define explicitly. Thus the central motivation

\(^{15}\)The source code and executable can be downloaded from https://sourceforge.net/projects/ord. The downloads include a users manual and a document describing the underlying mathematics and documenting the code.

\(^{16}\)Kleene’s \(O\) is a set of notations for all recursive ordinals. It obtains this completeness by a definition that requires quantifying over the reals and thus these notation are not recursively enumerable. Notations for any initial segment of these ordinals \(\leq \alpha\), a recursive ordinal, are recursively enumerable from any member of \(O\) which is a notation for \(\alpha\).

\(^{17}\)A \(\Pi_n\) statement starts with a universal quantifier (\(\forall\)) and contains \(n-1\) alternations between universal and existential (\(\exists\)) quantifiers. A \(\Pi^1_1\) statement has a similar definition for quantifiers over the reals.

\(^{18}\)A \(\Pi^1_1\) complete set, if it is encoded as a TM oracle, allows the TM to decide any \(\Pi^1_1\) statement.
of this work is to use the computer as a research tool to augment human intuition with the enormous combinatorial power of today’s computers.

There is the outline of a theory of objective mathematical truth that underlies this approach in Section 4.7. This theory sees objective mathematics as logically determined by a recursive enumerable sequence of events. (The relationship between these events may be complex19, but these events, by themselves, must decide the statement.) Objective mathematics includes arithmetic and hyperarithmetic statements and some statements requiring quantification over the reals.

This paper’s intended readership is anyone with an interest in the recursive ordinals or the foundations of mathematics that has a basic understanding of programming (at least knows what a TM is and how it can be programmed) and a basic understanding of set theory and ordinal numbers such as might be obtained in an introductory course in set theory or its equivalent.

4.1 Program structure and interactive mode

This section gives a brief overview of aspects of object oriented programming in C++ and how they are used to structure the program. It then gives a brief description of the interactive mode of the calculator. It is intended to keep this article self contained for those with a limited knowledge of programming and to introduce the interactive calculator.

4.1.1 Program structure

C++ connects data and the procedures that operate on that data by defining a class20. Both data structures and member functions that operate on those structures are declared within a class. Instances of a class are created with a special member function called a constructor. This helps to insure that all instances of a class are properly initialized.

C++ classes can form a hierarchy with one class derived from another. The first or base class has only the operations defined in it. A derived class has both the base class operations and its own operations. In the ordinal calculator there is a base class Ordinal for notations less than \(\varepsilon_0 \). Larger ordinals are derived in a hierarchy that has Ordinal as its base class. All members of this hierarchy can be referenced as Ordinals. Some procedures, like compare that determines the relative size of two notations, must be rewritten for each new derived class. By using virtual functions with the same name, compare, the correct version will always be called even though the class instance is only referenced as an Ordinal in the code. Programs which call Ordinal member functions like compare are written with an instance of the Ordinal class followed by dot and the member function and its parameters. For example \(\text{ord1.compare(ord2)} \) compares Ordinals \text{ord1} and \text{ord2}. This example returns -1, 0 or 1 if \text{ord1} is \(<\), \(=\) or \(>\) \text{ord2}.

19\text{The valid relationships cannot be precisely defined without limiting the definition beyond what is intended.}

20\text{C++ constructs and plain text calculator input and output are in typewriter font.}
4.1.2 Interactive mode

The ordinal calculator has a command line interactive mode that supports most functions without requiring C++ coding. In this mode one can assign ordinal expressions to a variable. These expressions can include ordinal notation variables. Aside from reserved words\(^{21}\), all names starting with a letter are variables that can be assigned notations. Typing a name assigned to a notation will display the notation in plain text format (the default) and/or \(\LaTeX\) format\(^{22}\).

The calculator includes symbols for addition '+' , multiplication '*', exponentiation '^' and parentheses to group subexpressions. To compare the relative size of two ordinal expressions use the operators, < , <= , > , >= and ==. To list the first \(n\) notations for ordinals in an infinite sequence that have the ordinal represented by \(\alpha\) as there union write \(\alpha.\text{listElts}(n)\).\(^{23}\) The \texttt{help} command provides online documentation.

4.2 Recursive ordinal notations and the Cantor normal form

The ordinal calculator assigns strings as notations to an initial fragment of the recursive ordinals. It contains a recursive process for deciding the relative size (< , = , or >) of the ordinals represented by each string and a recursive process for deciding if a given string represents an ordinal. Section 4.5 describes an expansion of this recursive ordinal notation system that represents \(\omega_1^{\text{CK}}\) (the Church-Kleene ordinal, the ordinal of the recursive ordinals) and larger countable ordinals. There are gaps in the ordinals with notations in this expanded structure although the set of \textit{all notations in the system} is recursively enumerable and recursively ranked.

Greek letters represent both notations, the finite strings that represent ordinals, and the ordinals themselves. The relative size of notations is the relative size of the ordinals they represent. Notations are successors or limits if the ordinal they represent are.

There is a \texttt{virtual Ordinal} member function \texttt{limitElement(n)} on the integers that outputs an increasing sequence of ordinal notations with increasing \(n\). If notation \(\alpha\) represents recursive ordinal, the union of the ordinals represented by the outputs of \(\alpha.\text{limitElement}(n)\) is the ordinal represented by \(\alpha\). Every ordinal, \(\alpha\), can be represented as shown in expression 1

\[
\alpha_1 > \alpha_2 > \alpha_3 > \ldots > \alpha_k
\]

The \(\alpha_k\) are ordinal notations and the \(n_k\) are integers > 0.

\[
\omega^{\alpha_1} n_1 + \omega^{\alpha_2} n_2 + \omega^{\alpha_3} n_3 + \ldots + \omega^{\alpha_k} n_k
\]

\(^{21}\)The reserved words in the calculator are \texttt{help} and the commands listed by typing \texttt{help cmds} , \texttt{w} and \texttt{omega} representing \(\omega\), \texttt{epsilon} representing \(\varepsilon\), \texttt{gamma} representing \(\Gamma\), \texttt{psi} representing \(\varphi\), \texttt{w1CK} representing \(\omega_1^{\text{CK}}\) (the ordinal of the recursive ordinals) and \texttt{eps0} representing \(\varepsilon_0\).

\(^{22}\)The command \texttt{opts} followed by \texttt{text} , \texttt{tex} or both controls the output format. In addition there is a member function, \texttt{cpp}, that outputs an ordinal notation as C++ code and command \texttt{cppList} that outputs all user defined notations in C++ code. These are useful in writing C++ code using the calculator C++ classes directly.

\(^{23}\)Sometimes mathematical notation is combined with C++ code. In this example the C++ definition of a member function is combined with a Greek letter to represent the C++ object (an \texttt{Ordinal} notation) that the subroutine is called from.
The calculator input format represents \(\omega \) as \(w \). The above expression is written as:

\[
a = w^{a_1}n_1 + w^{a_2}n_2 + w^{a_3}n_3 + \ldots + w^{a_k}n_k
\]

The \(n_1 \ldots n_k \) are integers and the \(a_1 \ldots a_k \) are variables for previously defined ordinal notations or notations in parenthesis. The equal sign assigns the specified notation to variable \(a \).

\[
\varepsilon_0 = \bigcup \omega, \omega^\omega, \omega^{\omega^\omega} \ldots \text{ and cannot be reached with } \omega^\omega.
\]

The Cantor normal form gives unique representation only for ordinals \(\varepsilon_0 \). Each term in expression 1 is represented by a member of \texttt{class CantorNormalElement}. The terms are linked in decreasing order in \texttt{class Ordinal}. This \texttt{base class} can represent any ordinal \(\varepsilon_0 \). The integers used to define finite ordinals \(24 \) are scanned and processed with a library that supports arbitrarily large integers \(25 \). The \texttt{Ordinal} instance representing \(\omega \) is predefined. Larger ordinals in the base class are constructed using the integers, \(\omega \) and three ordinal operators, +, \(\times \) and exponentiation.

4.3 The Veblen hierarchy

The Veblen hierarchy'[35, 27, 18, 29] extends the Cantor normal form by defining functions that grow much faster than ordinal exponentiation. These define ordinal notations much larger than \(\varepsilon_0 \). The Veblen hierarchy is developed in two stages. The first involves expressions of a fixed finite number of parameters. The second involves functions definable as limits of sequences of functions of an increasing number of parameters.

4.3.1 Two parameter Veblen function

The Veblen hierarchy starts with a function of two parameters, \(\varphi(\alpha_1, \alpha_2) \) based on \(\varphi(\alpha) = \omega^\alpha \). \(\varphi(1, \alpha_2) \) is defined as the \(\alpha_2 \) fixed point of \(\omega^\alpha \) and is written as \(\varepsilon_{\alpha_2} \).

\[
\varphi(2, 0) = \bigcup \varepsilon_1, \varepsilon_{\varepsilon_1+1}, \varepsilon_{\varepsilon_{\varepsilon_1+1}+1}, \ldots
\]

and

\[
\varphi(2, \alpha_2 + 1) = \bigcup \varphi(2, \alpha_2), \varphi(1, \varphi(2, \alpha_2) + 1), \varphi(1, \varphi(1, \varphi(2, \alpha_2) + 1) + 1)\ldots
\]

Each element of the sequence, past the first, takes the previous element as the second parameter. If \texttt{limitElement} computes a limit ordinal as a parameter, it often adds 1 to that parameter to avoid fixed points. This is reflected in the examples.

The ordinal calculator plain text format for \(\varphi(\alpha_1, \alpha_2) \) is \texttt{psi(a1,a2)}. The calculator uses three common substitutions in expressions in the Veblen hierarchy. These are: \(\omega^\alpha = \varphi(\alpha) \), \(\varepsilon(\alpha) = \varphi(1, \alpha) \) and \(\Gamma(\alpha) = \varphi(1, 0, \alpha) \). These substitutions are used in tables 2, 3, 4 and 6.

The plain text versions are \(w^a \) for \(\omega^a \), \texttt{epsilon(a)} for \(\varepsilon(\alpha) \) and \texttt{gamma(a)} for \(\Gamma(\alpha) \).

Table 1 defines the two parameter Veblen function. In some cases the table gives an inductive definition on the integers. It defines \(\varphi(...)^0 \) and then \(\varphi(...)^{n+1} \) using \(\varphi(...)^n \). Finally \(\varphi(...) \) is defined as an infinite union over the integers.

\[24\] The syntax for defining the ordinal 12 named ‘a’ is ‘\texttt{Ordinal a(12);}’ in C++ and ‘\texttt{a=12}’ in the interactive ordinal calculator.

\[25\] The package used is MPIR, (Multiple Precision Integers and Rationals) based on the package GMP (GNU Multiple Precision Arithmetic Library). Either package can be used, but only MPIR is supported on Microsoft operating systems.
Definition of $\varphi(\alpha_1, \alpha_2)$

L is lines in Table 2. X is an exit code (see Note 26).

<table>
<thead>
<tr>
<th>$\varphi(\alpha_2)$</th>
<th>$= \omega^{\alpha_2}$.</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi(1, \alpha_2)$</td>
<td>$= \varepsilon_{\alpha_2}$.</td>
<td>α_2 a successor</td>
<td>3</td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)$</td>
<td>$= \varphi(\alpha_1, \alpha_2 - 1)$ and define $\varphi(\alpha_1, \alpha_2)^n$ + 1 then by induction on n</td>
<td>α_2 a limit</td>
<td>4</td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)$</td>
<td>$= \bigcup_{n<\omega} \varphi(\alpha_1, \alpha_2)^n$ which expands to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)$</td>
<td>$= \bigcup \varphi(\alpha_1, \alpha_2 - 1)$, $\varphi(\alpha_1 - 1, \varphi(\alpha_1, \alpha_2 - 1) + 1)$ + 1, $\varphi(\alpha_1 - 1, \varphi(\alpha_1 - 1, \varphi(\alpha_1, \alpha_2 - 1) + 1) + 1) + 1, \ldots$,</td>
<td>10</td>
<td>FD</td>
</tr>
<tr>
<td>If α_1 and α_2 are successors, define</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)^0$</td>
<td>$= \varphi(\alpha_1, \alpha_2 - 1)$ and define</td>
<td>α_2 a limit</td>
<td>3</td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)^{n+1}$</td>
<td>$= \varphi(\alpha_1 - 1, \varphi(\alpha_1, \alpha_2)^n) + 1$ then by induction on n</td>
<td>α_2 a limit</td>
<td>4</td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)$</td>
<td>$= \bigcup_{n<\omega} \varphi(\alpha_1, \alpha_2)^n$ which expands to</td>
<td>α_2 a limit</td>
<td>4</td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)$</td>
<td>$= \bigcup \varphi(\alpha_1, \alpha_2 - 1)$, $\varphi(\alpha_1 - 1, \varphi(\alpha_1, \alpha_2 - 1) + 1)$ + 1, $\varphi(\alpha_1 - 1, \varphi(\alpha_1 - 1, \varphi(\alpha_1, \alpha_2 - 1) + 1) + 1) + 1, \ldots$,</td>
<td>10</td>
<td>FD</td>
</tr>
<tr>
<td>If α_2 is a limit, then</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)$</td>
<td>$= \bigcup_{\beta<\alpha_2} \varphi(\alpha_1, \beta)$.</td>
<td>8</td>
<td>FL</td>
</tr>
<tr>
<td>If α_1 is a limit and α_2 is a successor then</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varphi(\alpha_1, \alpha_2)$</td>
<td>$= \bigcup_{\beta<\alpha_1} \varphi(\beta, \varphi(\alpha_1, \alpha_2 - 1) + 1)$.</td>
<td>12</td>
<td>FN</td>
</tr>
</tbody>
</table>

Table 1: Two parameter Veblen function definition

If α_2 a limit in $\varphi(\alpha_1, \alpha_2)$ then the limit of the expression is expanded by expanding the limit α_2. If the least significant nonzero parameter is a limit, then it must be expanded first by limitElement and related functions. Consider $\varphi(\omega, \omega)$. $\forall n<\omega \varphi(n + 1, 0) > \varphi(n, \omega)$ and thus $\bigcup_{n<\omega} \varphi(n, \omega) = \bigcup_{n<\omega} \varphi(n + 1, 0) = \varphi(\omega, 0)$. With this in mind, if the least significant parameter is a successor and the the next least significant parameter is a limit, one must exercise care to make sure both parameters affect the result. Examples of the two parameter Veblen function are in in Table 226.

4.3.2 Finite parameter Veblen functions

The finite parameter Veblen function generalizes the two parameter Veblen function to n parameters for all integers n. This section defines how it is computed. The definition of a notation for a recursive limit ordinal must define a recursively enumerable sequence of notations such that the union of ordinals they represent is the ordinal represented by the original notation. This sequence uses the original notation modified by replacing parameters. The replacement can use the previous notation in the sequence. One or two parameters are replaced and they are usually the least significant parameters and/or the least significant nonzero parameters. For the Veblen hierarchy the most significant parameters always occur first in reading from left to right.

Following are the rules that apply to the finite parameter Veblen hierarchy.

1. The hierarchy starts with $\varphi(\alpha) = \omega^\alpha$ and $\varphi(1, \alpha) = \varepsilon_\alpha$.

26 In the ordinal calculator an exit code is assigned to all code fragments that compute the sequences that define the value of a limit ordinal. These are included in some tables as the right most column labeled X. These are documented in [9] and used to verify that the regression tests include all cases. They are available in the interactive calculator using member function lec. They are included here to connect examples of sequences that define limit notations with the rules they come from and to insure the tables are complete.
\[\alpha \text{. limitElement}(n) \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(n=1)</th>
<th>(n=2)</th>
<th>(n=3)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega^{\omega^2})</td>
<td>(\omega^\omega)</td>
<td>(\omega^2)</td>
<td>(\omega^3)</td>
<td>C</td>
</tr>
<tr>
<td>(\varepsilon_1)</td>
<td>(\varepsilon_0)</td>
<td>(\omega^{\varepsilon_0+1})</td>
<td>(\omega^{\varepsilon_0+1})</td>
<td>FD</td>
</tr>
<tr>
<td>(\varepsilon_2)</td>
<td>(\varepsilon_1)</td>
<td>(\omega^{\varepsilon_1+1})</td>
<td>(\omega^{\varepsilon_1+1})</td>
<td>FD</td>
</tr>
<tr>
<td>(\varepsilon_\omega)</td>
<td>(\varepsilon_1)</td>
<td>(\varepsilon_2)</td>
<td>(\varepsilon_3)</td>
<td>FL</td>
</tr>
<tr>
<td>(\varphi(2, 1))</td>
<td>(\varphi(2, 0))</td>
<td>(\varepsilon_{\varphi(2, 0)+1})</td>
<td>(\varepsilon_{\varphi(2, 0)+1+1})</td>
<td>FD</td>
</tr>
<tr>
<td>(\varphi(2, 2))</td>
<td>(\varphi(2, 1))</td>
<td>(\varepsilon_{\varphi(2, 1)+1})</td>
<td>(\varepsilon_{\varphi(2, 1)+1+1})</td>
<td>FD</td>
</tr>
<tr>
<td>(\varphi(2, 5))</td>
<td>(\varphi(2, 4))</td>
<td>(\varepsilon_{\varphi(2, 4)+1})</td>
<td>(\varepsilon_{\varphi(2, 4)+1+1})</td>
<td>FD</td>
</tr>
<tr>
<td>(\varphi(2, \omega))</td>
<td>(\varphi(2, 1))</td>
<td>(\varphi(2, 2))</td>
<td>(\varphi(2, 3))</td>
<td>FL</td>
</tr>
<tr>
<td>(\varphi(3, 1))</td>
<td>(\varphi(3, 0))</td>
<td>(\varphi(2, \varphi(3, 0)+1))</td>
<td>(\varphi(2, \varphi(2, \varphi(3, 0)+1)+1))</td>
<td>FD</td>
</tr>
<tr>
<td>(\varphi(3, 2))</td>
<td>(\varphi(3, 1))</td>
<td>(\varphi(2, \varphi(3, 1)+1))</td>
<td>(\varphi(2, \varphi(2, \varphi(3, 1)+1)+1))</td>
<td>FD</td>
</tr>
<tr>
<td>(\varphi(\omega, 1))</td>
<td>(\varepsilon_{\varphi(\omega, 0)+1})</td>
<td>(\varphi(2, \varphi(\omega, 0)+1))</td>
<td>(\varphi(3, \varphi(\omega, 0)+1))</td>
<td>FN</td>
</tr>
<tr>
<td>(\varphi(\omega, 9))</td>
<td>(\varepsilon_{\varphi(\omega, 8)+1})</td>
<td>(\varphi(2, \varphi(\omega, 8)+1))</td>
<td>(\varphi(3, \varphi(\omega, 8)+1))</td>
<td>FN</td>
</tr>
<tr>
<td>(\varphi(\omega, \omega))</td>
<td>(\varepsilon_{\varphi(\omega, \omega)+1})</td>
<td>(\varphi(\omega, 1))</td>
<td>(\varphi(\omega, 2))</td>
<td>(\varphi(\omega, 3))</td>
</tr>
<tr>
<td>(\varphi(\omega, \omega+2))</td>
<td>(\varepsilon_{\varphi(\omega, \omega+1)+1})</td>
<td>(\varphi(2, \varphi(\omega, \omega+1)+1))</td>
<td>(\varphi(3, \varphi(\omega, \omega+1)+1))</td>
<td>FN</td>
</tr>
</tbody>
</table>

Table 2: Two parameter Veblen function examples

2. In some of the substitutions, when the substituted parameter is a limit, 1 is added to avoid fixed points.

3. If notation \(\alpha \) has least significant nonzero parameter \(\beta \), a limit, then \(\alpha \) represents the union of a sequence of ordinals with the same notation as \(\alpha \) except \(\beta \) is replaced by a sequence of notations that have \(\beta \) as their limit. See lines 7 and 11 in Table 4 (exit code FL).

4. If notation \(\alpha \) has least significant parameter \(\gamma \) which is a successor and the next most significant nonzero parameter, \(\beta \), is a limit, then the sequence replaces \(\beta \) with a sequence that has \(\beta \) as its limit and the parameter to its immediate right with \(\alpha \) with one subtracted from the \(\gamma \) parameter. See lines 5 and 6 in Table 4 (exit code FN).

5. If notation \(\alpha \) has least significant nonzero notation \(\beta \), a successor, and one or more less significant parameters of 0, then \(\alpha \) represents the ordinal that is the limit of the sequence starting with the notation for \(\alpha \) with 1 subtracted from \(\beta \) and the next (to the right) parameter changed from 0 to 1 to support the special case of a subtraction result of 0. Subsequent sequence values have a similar replacement with the next (to the right) parameter replaced with the previous element in the sequence. See lines 8 and 12 in Table 4 (exit code FB). Line 12 is the special case when the only nonzero parameter is 1 and all members of the sequence that define \(\alpha \) have one less parameter than \(\alpha \).

6. If notation \(\alpha \)'s least significant parameter, \(\beta \), is a successor, the next to the least most significant parameter is zero and the next to the least most significant nonzero parameter, \(\gamma \), is a successor, then the first element in the sequence that defines \(\alpha \) is
Table 3: Three parameter Veblen function examples

Table 4: More than three parameter Veblen function examples

similar to α with 1 subtracted from β. Subsequent members of the sequence have one subtracted from γ and the parameter to the immediate right is replaced with the previous element in the sequence. See lines 9 and 10 in Table 4 (exit code FD).

7. Items 4 and 6 above include cases where the least significant nonzero parameter has no effect on the limit that defines the sequence. Those parameters are left unchanged in the ordinal calculator for the cases that do not matter. Examples include lines 5, 6 and 10 in Table 4.

Three parameter Veblen function examples are shown in Table 3 and larger examples in Table 4.
4.3.3 Transfinite Veblen functions

The limit of the finite parameter Veblen functions is the union of the sequence \(\varphi(1), \varphi(1,0), \varphi(1,0,0), \ldots \). To represent this and larger ordinals, the notation for finite parameter Veblen functions is expanded with the ordinal notation subscript \(\gamma \) in the following expression.

\[
\varphi_\gamma(\alpha_1, \alpha_2, \ldots, \alpha_n)
\]

The ordinal calculator plain text format for this is \(\text{psi}_{\gamma}(a_1,a_2,\ldots,a_n) \). The above sequence is defined to be \(\varphi_1 \).

The transfinite Veblen function is built on the finite parameter Veblen function. If \(\zeta \) is a transfinite Veblen notation, then the rules for defining \(\zeta.\text{limitElement}(n) \) include the numbered rules in Section 4.3.2. When those rules are applicable, the \(\gamma \) parameter is unchanged and copied from \(\zeta \) to \(\zeta.\text{limitElement}(n) \). \(\gamma \) is changed only if the single nonzero \(\alpha \) parameter is a successor and the least significant \(\alpha \) parameter. The rules for this are given in in Table 5. The right column, X, gives the exit code described in Note 26. Table 6 gives examples of the transfinite Veblen function, the associated first 3 values of \(\text{limitElement}(n) \) and the corresponding exit code. These codes each refer to either Table 5 or the enumerated list in Section 4.3.2.

The C++ coding of \(\text{limitElement} \) when the same rules are used for two classes of notations (like the finite and transfinite Veblen functions) involves two steps. First the higher level \(\text{limitElement} \) explicitly calls the lower class version to handle some cases. In C++ this is done by explicitly referencing the lower class as in \(\text{lower_class_name}::\text{limitElement}(n) \). The second step, in the lower class function, creates an output \(\text{Ordinal} \) of the required class. This is done by calling a virtual function of the \(\text{Ordinal} \) instance that \(\text{limitElement} \) was originally called from. The creating virtual function calls the constructor for the \(\text{Ordinal} \) derived subclass being generated Before calling this constructor. it fills in parameters defined only at the higher class level and that are not modified in computing \(\text{limitElement}(n) \). As the ordinal calculator was expanded to define more ordinal notation classes, this approach was increasingly helpful.

Finally it is worth noting that the constructor is not called directly. The constructor is called from a function that evaluates possible fixed points generated by the parameters of the notation to creates a unique notation for each ordinal represented in the system. Direct calls to the constructor can create non unique notations.

4.4 Limitations of ordinal notations

There are at least two ways one can develop and extend the recursive ordinal hierarchy. One is with a recursively enumerable set of ordinal notations and a recursive function that determines the ranking of any two notations in the system. This ranking can be used to recursively compute a unique notation for every ordinal represented in the system. The Veblen hierarchy[35] and its extensions, that includes ordinal collapsing (see Section 4.5.2), are examples. This type of notation is used in the ordinal calculator.

Kleene’s \(\mathcal{O} \), defines a notation for every recursive ordinal. However the set of all these notations is not recursively enumerable. Every infinite recursive ordinal has multiple notations in \(\mathcal{O} \) and no recursive algorithm can determine the relative size of all notations in
Definition of $\varphi_\gamma(\alpha)$

L is lines in Table 6. X is an exit code (see Note 26).

$\varphi_1 = \bigcup \varphi(1), \varphi(1,0), \varphi(1,0,0), \ldots$,

$\varphi_{\gamma+1} = \bigcup \varphi_\gamma(\varphi_\gamma + 1), \varphi_\gamma(\varphi_\gamma + 1,0), \varphi_\gamma(\varphi_\gamma + 1,0,0), \ldots$,

If γ is a limit and $\alpha = 0$ then

$\varphi_\gamma = \bigcup_{\beta \in \gamma} \varphi_\beta$.

If γ and α are successors then

$\varphi_\gamma(\alpha) = \bigcup \varphi_\gamma(\alpha - 1) + 1, \varphi_\gamma(\alpha - 1,0), \varphi_\gamma(\alpha - 1,0,0), \ldots$,

If γ is a limit and α is a successor then

$\varphi_\gamma(\alpha) = \bigcup_{\beta \in \gamma} \varphi_\beta(\varphi_\gamma(\alpha - 1) + 1)$.

Table 5: Definition of $\varphi_\gamma(\alpha)$

<table>
<thead>
<tr>
<th>α</th>
<th>α_{limit}Element(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_1</td>
<td>$n=1$</td>
</tr>
<tr>
<td>$\varphi_1(1,0,0)$</td>
<td>$\varphi_1(1,0)$</td>
</tr>
<tr>
<td>$\varphi_1(1,0,1)$</td>
<td>$\varphi_1(1,0)$</td>
</tr>
<tr>
<td>$\varphi_3(1)$</td>
<td>$\varphi_3 + 1$</td>
</tr>
<tr>
<td>$\varphi_3(2)$</td>
<td>$\varphi_3(1) + 1$</td>
</tr>
<tr>
<td>$\varphi_5(3)$</td>
<td>$\varphi_5(1)$</td>
</tr>
<tr>
<td>φ_7</td>
<td>φ_1</td>
</tr>
<tr>
<td>φ_8</td>
<td>$\varphi_2(\varphi_3 + 1,0)$</td>
</tr>
<tr>
<td>φ_9</td>
<td>$\varphi_3(1) + 1$</td>
</tr>
<tr>
<td>φ_10</td>
<td>$\varphi_3(1)$</td>
</tr>
</tbody>
</table>

Table 6: Transfinite Veblen function examples
Both notation systems, the Veblen hierarchy and Kleene’s \(O \), have a limit on effective notation systems for recursive ordinals. In the first case the limit is of the notations defined in the system. In the case of Kleene’s \(O \) it is the limit of unique notations in recursive and hyperarithmetical progressions of notations in \(O \)[28].

One cannot construct a recursive system of recursively ranked notations for all recursive ordinals. The ordinal calculator constructs notations for an initial segment of the recursive ordinals and for the ordinal of the recursive ordinal, \(\omega_1^{CK} \), and many larger ordinals. Such a system must be incomplete with many gaps starting with the gap between the limit of the recursive ordinals defined in the system and \(\omega_1^{CK} \).

The ordinal calculator notations \(\geq \omega_1^{CK} \) are based in part on generalizing the idea in \(O \) of indexing the notation for a limit ordinals with the integers or finite ordinals. For any \(\alpha \), a limit ordinal notation in \(O \), one can construct a recursive function on the integers that enumerates an infinite sequence of notations, such that the union of the ordinals represented by notations in the sequence is the ordinal \(\alpha \) represents. The ordinal calculator generalizes this idea by defining levels of ordinals indexed by notations at a lower level. The first level is the integers or finite ordinals. The next level is the recursive ordinals. The first level beyond the recursive ordinals has both limits indexed by all recursive ordinal notations and limits indexed by the integers. The notations for limit ordinals must encode the type or parameter they are indexed with. The idea of recursive functions defined on a hierarchy of types is a bit reminiscent of the typed hierarchy of *Principia Mathematica*[36].

Although a domain that includes notations for all recursive ordinals cannot be recursively enumerable, recursive functions operating on that domain can use its properties to insure the output for any valid input will have the required properties. This imposes constraints on virtual functions, such as limitElement and compare to insure new classes can be added to expand the notation. For example the compare function must check to see if its argument comes from a derived class\(^{27} \) which may not have been defined when this version of compare was written. In this case, if term1 and term2 are CantorNormalElements in an Ordinal expression, then term1.compare(term2) returns -term2.compare(term1) calling compare in the higher level derived class.

4.5 Notations for the Church-Kleene ordinal and beyond

The countable admissible ordinals are the starting point for extending the ordinal calculator to and beyond \(\omega_1^{CK} \). The first two admissible ordinals are \(\omega \) and \(\omega_1^{CK} \). Subsequent countable admissible ordinals are defined as Kleene’s \(O \) is, but using a TM with an oracle for previously defined notations[33, 34]. There are limits of sequences of admissible ordinals that are not themselves admissible. For example this is true of the first \(\omega \) admissible ordinals. These limit ordinals are part of the hierarchy of admissible ordinals in the calculator.

\(^{27}\)The kernel version of compare, which does most of the work, acts on the terms that make up the Cantor normal form expression of an Ordinal. These terms belong to the base class CantorNormalElement. The kernel version of compare is a member function of this class. As the Ordinal class is expanded so is CantorNormalElement. As new classes are derived from this base class they are assigned an incremented integer level which can be accessed with term.codeLevel where term is a CantorNormalElement. This facility is used by compare to check if its argument is at a higher class level.
4.5.1 Notations for countable admissible ordinals

The notation for countable admissible ordinals in the ordinal calculator is ω_κ. κ is the index in the admissible hierarchy starting with $\omega_0 = \omega$ and $\omega_1 = \omega^1_{CK}$. The notation is extended to $\omega_\kappa,\gamma(\alpha_1, \alpha_2, \ldots, \alpha_n)$ to define some of the values between admissible ordinals. The ordinal calculator plain text format is $w_{k,g}(a_1,a_2,\ldots,a_n)^{28}$. The γ and α_i parameters have a definition based in part on the Veblen hierarchy. Thus, for example, $\omega_1(\omega)$ and $\omega_1(1,2)$ use rules 3 and 6 with exit codes FL and FD in the list in Section 4.3.2. Having the same exit code means they are computed by the same code fragment as described in Section 4.3.3. New rules and code are required only for some instances of $\omega_\kappa,\gamma(\alpha)$. If there is more than one α parameter, α_n is a limit or $\gamma > 0$ then the existing rules apply. The new rules are in Table 7.

If there are no parameters except κ (γ and all α are 0) then new rules and an expanded approach to defining notations for limit ordinals is required. The smallest example is ω_1. It is the first limit ordinal notation that cannot be fully indexed by the integers. It must be indexed by notations for recursive ordinals. The Ordinal virtual member function limitOrd(α) is defined to support this. This is used to expand limits somewhat as limitElement(n) is29.

Notations have an associated limit type. For example the limit type of ω_1 is the recursive ordinals, however the limit type of ω_κ is the integers since it is the union of $\omega_1, \omega_2, \omega_3, \ldots$. If the least significant nonzero parameter β of an ordinal ζ is a limit, then the limit type of ζ is the limit type of β.

The value of ω_κ.limitOrd(η) for κ a successor is expressed in the notation $\omega_\kappa[\eta]$. The plain text format for this is $w_\kappa[k][e]$. This is the first case where the presence of a parameter in an Ordinal definition leads to a smaller Ordinal than if it were absent. This holds for all square bracketed parameters. This syntax with a square bracketed suffix is only meaningful (and accepted in the ordinal calculator) if all previously described parameters except κ are 0 and κ represents a successor. In addition η must meet constraints on limit type.

Limit type is implemented primarily through the member functions limitType and maxLimitType. limitType is determined by the least significant (nonzero sometimes) one or two parameters. maxLimitType is determined by the maximum limit type of all parameters and the value of κ30. α.limitOrd(β) is a valid expression if α.limitType() $>$ β.maxLimitType(). In addition parameters with a square bracketed suffix (either single or double as described in Section 4.5.2) are allowed if α.limitType() = β.maxLimitType() and $\beta < \alpha$.

By definition $\omega_\kappa = \bigcup_{\eta<\omega_\kappa} \omega_\kappa[\eta]$. Many values of η will not be defined in a recursive system of notations, but the system should be expandable to support any of them. This is an example of explicit incompleteness. $\omega_\kappa[\eta]$ and thus ω_κ.limitOrd(η) could be defined...

28The calculator plain text output format expands 'w_' to 'omega_'. Either version can be input.

29limitElement(n) is defined for limits that require limitOrd(α) but it can only compute an initial fragment of the defining notations. Like limitElement, limitOrd has its own exit codes (see Note 26). These codes are not listed here. They are documented in [9] and are important in insuring that the set of regression tests is complete.

30The limit type of ω_κ is $\kappa+1$ if κ is finite and κ otherwise. The limit type of the integers and all successor notations is 0. Limit ordinals $< \omega_1$ have a limit type of 1. These limits have integer indices. The limitType and maxLimitType member functions are available in the interactive calculator.

39
<table>
<thead>
<tr>
<th>Definition of $\omega_\kappa(\alpha)$ for α a successor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L is lines in Table 9; X is an exit code (see Note 26).</td>
<td>L</td>
</tr>
<tr>
<td>If $\kappa = 1$ and α is a successor define</td>
<td></td>
</tr>
<tr>
<td>$\omega_1(\alpha)^0 = \omega_1(\alpha - 1)$ and define</td>
<td></td>
</tr>
<tr>
<td>$\omega_1(\alpha)^{n+1} = \varphi_\omega \omega_1(\alpha)^n(\alpha - 1)$ then</td>
<td></td>
</tr>
<tr>
<td>$\omega_1(\alpha) = \bigcup_{n \in \omega} \omega_1(\alpha)^n$ which expands to</td>
<td></td>
</tr>
<tr>
<td>$\omega_1(\alpha) = \omega_1(\alpha - 1), \varphi_\omega \omega_1(\alpha-1)+1(\alpha - 1), \ldots.$</td>
<td>5</td>
</tr>
<tr>
<td>If κ and α are successors and $\kappa > 1$ then define</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa(\alpha)^0 = \omega_\kappa(\alpha - 1)$ and define</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa(\alpha)^{n+1} = \omega_\kappa-1, \omega_\kappa(\alpha)^n+1(\alpha - 1)$ then</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa(\alpha) = \bigcup_{n \in \omega} \omega_\kappa(\alpha)^n$ which expands to</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa(\alpha) = \bigcup \omega_\kappa(\alpha-1), \omega_\kappa-1, \omega_\kappa(\alpha-1)+1(\alpha - 1), \ldots.$</td>
<td>7, 9</td>
</tr>
<tr>
<td>If κ is a limit and α is a successor</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa(\alpha) = \bigcup_{\zeta \in \kappa} \omega_{\zeta, \omega_\kappa(\alpha-1)+1}.$</td>
<td>11, 12</td>
</tr>
</tbody>
</table>

Section 4.3.2 defines $\omega_{\kappa, \gamma}(\alpha_1, \alpha_2, \ldots, \alpha_n)$ if $\gamma > 0 \lor n > 1 \lor \alpha_n$ a limit.

Table 7: Definition of $\omega_\kappa(\alpha)$ for α a successor.
to be \(\eta \). This is the identity function. However the goal is to define notations for as many ordinals as possible. Thus the function diagonalizes what has previously been defined. In doing so it must make sure that \((\eta < \omega_\kappa) \rightarrow (\omega_\kappa.\text{limitOrd}(\eta) < \omega_\kappa)\). This rules for this are in Table 8.

There are three classes of notations that require \(\zeta.\text{limitOrd}(\beta) \).

1. If the least significant nonzero parameter of \(\zeta \) is \(\upsilon \) a limit notation with limit type greater than the integers, then the parameter \(\upsilon \) is replaced with \(\upsilon[\beta] \).

2. If the least significant nonzero parameter of \(\zeta, \alpha_m \), (one of the \(\alpha_n \) in expression 2) represents a successor and the next least significant nonzero parameter, \(\upsilon \) (either \(\gamma \) or one of the \(\alpha_n \) in expression 2) represents an ordinal with limit type greater than the integers, then \(\upsilon \) is replaced with \(\upsilon[\beta] \). In addition the most significant parameter (zero or nonzero) less significant than \(\upsilon \) is replaced with the original value of \(\alpha \) except 1 is subtracted from \(\alpha_m \).

3. If \(\kappa \) is the least significant nonzero parameter of \(\zeta \) then \(\zeta.\text{limitOrd}(\beta) = \zeta[\beta] \).

For notations for ordinals \(\geq \omega_1^{CK} \), the compare virtual member function works as defined in Section 4.1.1. As a consequence the incomplete ordinal notation hierarchy defined at any point in this process has a recursive well ordering implemented in the ordinal calculator. Thus the hierarchy and/or parts of it can be embedded within itself to fill some of the gaps between already defined notations. This is a bit like the Mandelbrot set[26] which repeatedly embeds its entire structure within itself. The embeddings of parts of ordinal notation within itself to fill in the gaps are a form of ordinal projection or collapsing.

4.5.2 Admissible ordinals and projection

Projection or collapsing uses the names of uncountable cardinals[27, 29] or countable admissible ordinals \(\geq \omega_1^{CK} \)[30] to extend the recursive ordinal hierarchy. A similar approach can both expand recursive ordinal notations and partially fill some of the gaps that must occur in a recursive system of notations that represents ordinals \(\geq \omega_1^{CK} \). This section describes an approach to ordinal projection used in the calculator.

This version of ordinal projection prepends a notation, \(\delta \), in double square brackets as in \([[\delta]]w_\kappa \). The plain text for this is \([[d]]w_{\{k\}} \). \(\delta \) must be a successor \(\leq \kappa \). The \(\delta \) prefix imposes a \text{limiType} of \(\delta \) if \(\delta \) is finite and \(\delta - 1 \) otherwise.\(^{31}\) Recall that the \text{limiType} of \(\omega_\kappa \) is \(\kappa + 1 \) if \(\kappa \) is finite and \(\kappa \) otherwise. The \(\delta \) prefix also requires that any output from \text{limitElement} or \text{limitOrd} that is \(\geq \omega_\delta \) must have the same \(\delta \) prefix prepended to it. In addition a double bracketed suffix is defined such that \([[\delta]]w_\kappa.\text{limitOrd}(\beta) = [[\delta]]w_\kappa[[\beta]] \). The plain text for this is \([[d]]w_{\{k\}}[b] \). The double bracketed suffix diagonalizes the ordinals definable with a single bracketed suffix. See tables 10 and 11 for the double bracketed prefix and suffix definitions that require new rules.

The ordinal notations in the calculator reference ordinals \(\geq \omega_1^{CK} \) but the notations defined within a specific recursive system are recursively well ordered and thus can be used to expand the recursive ordinal hierarchy as well as the gaps between notations for larger ordinals. The

\(^{31}\)Note the \(\delta \) prefix can never be a limit.
Definition of ω_κ and $\omega_\kappa[\eta]$

<table>
<thead>
<tr>
<th>If κ is a successor then</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_κ</td>
<td>$= \bigcup_{\beta < \kappa} \omega_\kappa[\beta]$.</td>
<td>4</td>
</tr>
<tr>
<td>$\omega_1[1]$</td>
<td>$= \bigcup \omega, \varphi_\omega, \varphi_{\omega+1}, \varphi_{\varphi_{\omega + 1} + 1}, \varphi_{\varphi_{\varphi_{\omega + 1} + 1} + 1}, \ldots$.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If $\eta > 1$ and a successor and $\kappa = 1$ then define</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_1[\eta]^0$</td>
<td>$= \omega_1[\eta - 1]$ and define</td>
<td>2</td>
</tr>
<tr>
<td>$\omega_1[\eta]^{n+1}$</td>
<td>$= \varphi_{\omega_1[\eta]^{n+1}}$ then</td>
<td></td>
</tr>
<tr>
<td>$\omega_1[\eta]$</td>
<td>$= \bigcup_{n \in \omega} \omega_1[\eta]^n$ which expands to</td>
<td></td>
</tr>
<tr>
<td>$\omega_1[\eta]$</td>
<td>$= \bigcup \omega_1[\eta - 1], \varphi_{\omega_1[\eta - 1] + 1}, \varphi_{\varphi_{\omega_1[\eta - 1] + 1} + 1}, \ldots$.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If $\eta = 1$ and $\kappa > 1$ is a successor then define</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_\kappa[1]^0$</td>
<td>$= \omega_{\kappa - 1}$ and define</td>
<td>8</td>
</tr>
<tr>
<td>$\omega_\kappa[1]^{n+1}$</td>
<td>$= \omega_{\kappa - 1}, \omega_{\kappa[1]^{n+1}}$ then</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa[1]$</td>
<td>$= \bigcup_{n \in \omega} \omega_\kappa[1]^n$ which expands to</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa[1]$</td>
<td>$= \bigcup \omega_{\kappa - 1}, \omega_{\kappa - 1}, \omega_{\kappa - 1}, \omega_{\kappa - 1}, \omega_{\kappa[1]^{n+1}}, \ldots$.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If κ and η are successors > 1 define</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_\kappa[\eta]^0$</td>
<td>$= \omega_\kappa[\eta - 1]$ and define</td>
<td>6</td>
</tr>
<tr>
<td>$\omega_\kappa[\eta]^{n+1}$</td>
<td>$= \omega_{\kappa - 1}, \omega_{\kappa[\eta]^{n+1}}$ then</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa[\eta]$</td>
<td>$= \bigcup_{n \in \omega} \omega_\kappa[\eta]^n$ which expands to</td>
<td></td>
</tr>
<tr>
<td>$\omega_\kappa[\eta]$</td>
<td>$= \bigcup \omega_\kappa[\eta - 1], \omega_{\kappa - 1}, \omega_{\kappa[\eta - 1] + 1}, \ldots$.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If η is a limit then</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_\kappa[\eta]$</td>
<td>$= \bigcup_{\zeta < \eta} \omega_\kappa[\zeta]$.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If κ is a limit then η must be 0 and</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_κ</td>
<td>$= \bigcup_{\zeta < \kappa} \omega_\zeta$.</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 8: Definition of ω_κ and $\omega_\kappa[\eta]$.

42
<table>
<thead>
<tr>
<th>α</th>
<th>α.limitElement(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n=1$</td>
</tr>
<tr>
<td>1</td>
<td>$\omega_1[1]$</td>
</tr>
<tr>
<td>4</td>
<td>ω_1</td>
</tr>
<tr>
<td>5</td>
<td>$\omega_1(12)$</td>
</tr>
<tr>
<td>7</td>
<td>$\omega_3(5)$</td>
</tr>
<tr>
<td>8</td>
<td>$\omega_5[1]$</td>
</tr>
<tr>
<td>9</td>
<td>$\omega_5(8)$</td>
</tr>
<tr>
<td>10</td>
<td>$\omega_5,8$</td>
</tr>
<tr>
<td>11</td>
<td>$\omega_5(5)$</td>
</tr>
<tr>
<td>12</td>
<td>$\omega_5(8)$</td>
</tr>
<tr>
<td>13</td>
<td>$\omega_7,8$</td>
</tr>
<tr>
<td>14</td>
<td>$\omega_{\varepsilon_\omega}$</td>
</tr>
</tbody>
</table>

Table 9: Example notations $\geq \omega_1[1]$
\(\delta \) prefix allows the use of notations with any value of \(\kappa \) to index smaller ordinals. Note \([\delta]\omega_\kappa < \omega_\delta < ([\delta + 1])\omega_{\delta+1}\) for all \(\kappa \geq \delta \).

4.6 Ordinal projection with nested embedding

The embedding described in Section 4.5.2 is nested by expanding the single ordinal notation prefix, \(\delta \) to a sequence of paired notations written as \(\delta \sigma^{32} \). The \(\sigma \) is optional. The full syntax is in Figure 1. The first \(\delta \) must be \(\leq \kappa \) it has the same effect as the single \(\delta \) prefix did in limiting the parameters for \(\text{limitOrd} \). The remaining prefix parameters support nested embedding. The idea is to embed previously defined notations inside themselves to expand the recursive ordinals notations in the system and fill other gaps between notations. The notations in the prefix index this embedding. Thus the prefix, going from left (most significant) to right, contains the most significant parameters in the notation. Both the finite parameter Veblen function and the notation prefix have significance going from left to right but there is an important difference. The most significant parameter for the Veblen function is the number of parameters. \(\varphi(1,0,0) > \varphi(99,99) \). This is not true with nested embedding. The most significant parameter is the leftmost value of the prefix. The next most significant parameter is the number of \(\delta \)s in the prefix. Then the remainder of the prefix values going from left to right, followed by \(\kappa \) and the remaining parameters.

In describing these notations, the cases for which there are new rules are those in which the prefix of \(\zeta \) differs from the prefix in \(\zeta.\text{limitOrd}(\beta) \). This only occurs if \(\kappa = \delta_m \) in the notation \(\zeta \) and one of the following three conditions are met.

1. \(\kappa \) is a limit and the only nonzero parameter not in the prefix.

2. The only nonzero parameters not in the prefix are \(\kappa \) and the single bracketed suffix \([\eta] \) which is a successor.

3. The only nonzero parameters not in the prefix are \(\kappa \) and the least significant \(\alpha \) which is a successor.

In all other cases computing \(\nu = \zeta.\text{limitOrd}(\beta) \) uses rules described in previous sections.

When new rules are needed to define \(\text{limitElement} \) and \(\text{limitOrd} \), there are multiple conditions that require the prefix to be decremented and multiple states it may be in that require different algorithms to change it. Both the code and its documentation matches this structure. For example several code fragments with different exit codes call the same subroutines to manipulate the prefix. This documentation has a similar functional structure. The exit codes no longer have a nearly one to one correspondence with rules. Table 13 gives some conventions used in tables 14, 15 and 16. Table 14 describes the conditions that determine when and how a prefix is decremented. Table 15 describes the new rules that involve prefix changes defined in Table 14. These two tables together provide all inductive definitions of sequences that define a limit ordinal notation with prefix changes. Table 15 gives the new rules for prefix changes defined by functions on an ordinal parameter. Examples of all the

\(^{32}\)The character `\textbackslash lmoustache` (\textrm{\textbackslash lmoustache} in \LaTeX{} math mode) was chosen to indicate that the two parameters are connected as a pair.
Definition of $[[\delta]]\omega_{\kappa}$, $[[\delta]]\omega_{\kappa}[[\eta]]$ and $[[\delta]]\omega_{\kappa}[\eta]$

δ must be a successor with $\delta \leq \kappa$.

If $\delta = \kappa$ in $[[\delta]]\omega_{\kappa}[[\eta]]$ then the δ prefix is dropped.

L is example line(s) in Table 12. X is an exit code (see Note 26).

If κ is a successor then

$[[\delta]]\omega_{\kappa} = \cup_{\eta \in [[\delta]]\omega_{\kappa}[[\delta]]\omega_{\kappa}[[\eta]]}$.

If κ is a limit then

$[[\delta]]\omega_{\kappa} = \cup_{\alpha < \kappa \wedge \alpha > \delta}[[\delta]]\omega_{\alpha}$

If $\kappa = \delta$ and $\eta = 1$ define

$[[\delta]]\omega_{\delta}[[1]]^0 = \omega$ and define

$[[\delta]]\omega_{\delta}[[1]]^{n+1} = \omega_{\delta}[[\omega_{\delta}[[1]]^n + 1]$ then

$[[\delta]]\omega_{\delta}[[1]] = \cup_{n \in \omega}[[\delta]]\omega_{\delta}[[1]]^n$ which expands to

$[[\delta]]\omega_{\delta}[[1]] = \cup \omega, \omega_{\delta}[\omega], \omega_{\delta}[\omega_{\delta}[\omega]], \omega_{\delta}[\omega_{\delta}[\omega_{\delta}[\omega]]], ...$

If $\kappa > \delta$, κ a successor and $\eta = 1$ define

$[[\delta]]\omega_{\kappa}[[1]]^0 = [[\delta]]\omega_{\kappa-1}$ and define

$[[\delta]]\omega_{\kappa}[[1]]^{n+1} = \omega_{\kappa-1}[[\delta]]\omega_{\kappa}[[1]]^{n+1}$ then

$[[\delta]]\omega_{\kappa}[[1]] = \cup_{n \in \omega}[[\delta]]\omega_{\kappa}[[1]]^n$ which expands to

$[[\delta]]\omega_{\kappa}[[1]] = \cup[[\delta]]\omega_{\kappa-1}, \omega_{\kappa-1}[[\delta]]\omega_{\kappa-1}+1,$

$\omega_{\kappa-1}, \omega_{\kappa-1}, ...$

If $\eta > 1$ is a successor then

$[[\delta]]\omega_{\kappa}[[\eta]]^0 = [[\delta]]\omega_{\kappa}[[\eta - 1]]$ and define

$[[\delta]]\omega_{\kappa}[[\eta]]^{n+1} = [[\delta]]\omega_{\kappa}[[[\delta]]\omega_{\kappa}[[\eta]]^n + 1]$ then

$[[\delta]]\omega_{\kappa}[[\eta]] = \cup_{n \in \omega}[[\delta]]\omega_{\kappa}[[\eta]]^n$ which expands to

$[[\delta]]\omega_{\kappa}[[\eta]] = \cup[[\delta]]\omega_{\kappa}[[\eta - 1]],$

$[[\delta]]\omega_{\kappa}[[[\delta]]\omega_{\kappa}[[\eta - 1]] + 1],$

$[[\delta]]\omega_{\kappa}[[[\delta]]\omega_{\kappa}[[\eta - 1]] + 1] + 1, ...$

If η is a limit then

$[[\delta]]\omega_{\kappa}[[\eta]] = \cup_{\beta < \eta}[[\delta]]\omega_{\kappa}[[\beta]]$ and

$[[\delta]]\omega_{\kappa}[[\eta]] = \cup_{\beta < \eta}[[\delta]]\omega_{\kappa}[[\beta]]$

Table 10: Definition of $[[\delta]]\omega_{\kappa}$, $[[\delta]]\omega_{\kappa}[[\eta]]$ and $[[\delta]]\omega_{\kappa}[\eta]$
Nested embedding syntax in \LaTeX

\[
[[\delta_1, \sigma_1], \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]_{\omega_k} \\
[[\delta_1, \sigma_1], \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]_{\omega_k}[\eta] \\
[[\delta_1, \sigma_1], \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]_{\omega_k}[\eta] \\
[[\delta_1, \sigma_1], \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]_{\omega_k, \lambda}(\alpha_1, \alpha_2, \ldots, \alpha_n)
\]

The σ_k $k = 1, 2, \ldots, m$ are optional.

Nested embedding syntax in plain text

\[
[[d_1/s_1, d_2/s_3, \ldots, d_m/s_m]]_{w_{\{k\}}} \\
[[d_1/s_1, d_2/s_3, \ldots, d_m/s_m]]_{w_{\{k\}}}[e] \\
[[d_1/s_1, d_2/s_3, \ldots, d_m/s_m]]_{w_{\{k\}}}[e] \\
[[d_1/s_1, d_2/s_3, \ldots, d_m/s_m]]_{w_{\{k, g\}}}(a_1, a_2, \ldots, a_m)
\]

The “/sk” $k=1, 2, \ldots, m$ are optional.

There are several restrictions on these expressions.

1. $\forall k < m \{ (\delta_k < \delta_{k+1}) \lor ((\delta_k = \delta_{k+1}) \land (\sigma_k < \sigma_{k+1})) \}$.
2. $\kappa \leq \delta_m$.
3. If κ is a limit then no η parameter is allowed.
4. The most significant δ cannot be a limit.
5. If any other δ is a limit, then the associated σ must be 0.
6. If σ_m is a limit, then no η parameter is allowed.
7. $[[\delta]]_{\omega_{\delta}}[\eta] = \omega_{\delta}[\eta]$ and thus the $[[\delta]]$ prefix is deleted if $\delta = \kappa$ in a notation with a single bracketed suffix.

Figure 1: Nested embedding syntax and constraints
Definition of $[[\delta]]\omega_\kappa(\alpha)$

δ must be a successor with $\delta \leq \kappa$.

L is example line(s) in Table 12. X is an exit code (see Note 26).

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[[1]]\omega_1(1) = \cup[[1]]\omega_1, \varphi[[1]]\omega_1+1, \varphi\varphi[[1]]\omega_1+1+1, \cdots$</td>
<td>4 LECK</td>
</tr>
<tr>
<td>If $\kappa = \delta \land \kappa > 1$ then $[[\kappa]]\omega_\kappa(1) = \cup[[\kappa]]\omega_\kappa, \omega_{\kappa-1},[[\kappa]]\omega_{\kappa+1}, \omega_{\kappa-1,[[\kappa]]}\omega_{\kappa+1}+1, \cdots$</td>
<td>6 LECK</td>
</tr>
<tr>
<td>If $\kappa > 1 \land \kappa > \delta \land \alpha = 1$ define $[[\delta]]\omega_\kappa(1)^0 = [[\delta]]\omega_\kappa$ and define $[[\delta]]\omega_\kappa(1)^n+1 = [[\delta]]\omega_{\kappa-1,[[\delta]]}\omega_\kappa(1)^n+1$ then $[[\delta]]\omega_\kappa(1) = \cup_{n \in \omega}[[\delta]]\omega_\kappa(1)^n$ which expands to $[[\delta]]\omega_\kappa(1) = \cup[[\delta]]\omega_\kappa, [[\delta]]\omega_{\kappa-1,[[\delta]]}\omega_{\kappa+1}, \cdots$</td>
<td>7 LCDP</td>
</tr>
</tbody>
</table>

Table 11: Definition of $[[\delta]]\omega_\kappa(\alpha)$

rules are shown in Table 17. The rules for parameters that leave the prefix unchanged have been defined previously. They are in Section 4.3.2 and tables 5, 7, 8 and 10. The strength of nested embedding comes in part from appending a large value of σ when the least significant nonzero δ parameter is decremented and making κ much larger when the least significant σ is decremented. Doing this requires first decrementing a non-prefix parameter and the resulting notation is limitElement(1). If δ_m is decremented, limitElement(n+1) contains the decremented prefix with limitElement(n) appended as σ_m and the rest of the notation is the same as limitElement(1). If σ_m is decremented, limitElement(n+1) contains the decremented prefix. κ in limitElement(n+1) is set equal to limitElement(n). These cases are fully described in Table 15.

Figure 2 with notations in \LaTeX format and Figure 3 in plain text each summarize the syntax in version 0.3.2 of the ordinal calculator. These figures are references with links to the sections and tables that describe all parts of the syntax. The figures contain the same information except for the notation format.

4.7 Mathematical truth

A recursive formal mathematical system, such as ZF (Zermelo Frankel set theory), is a recursive process for enumerating theorems. Thus it is subject to analysis with the tools of computer science. However the mathematical content of ZF includes the uncountable and far beyond it. This would seem to be outside of the reach of computer science. The Löwenheim-
Cantor normal form (See Section 4.2).
\[\alpha_1 > \alpha_2 > \alpha_3 > \ldots > \alpha_k \]
\(\alpha \) and the \(\alpha_i \) are ordinal notations, \(n_i \) are nonzero integers
\[\omega^{\alpha_1}n_1 + \omega^{\alpha_2}n_2 + \omega^{\alpha_3}n_3 + \ldots + \omega^{\alpha_k}n_k \] (3)

Finite parameter Veblen functions (See sections 4.3.1, 4.3.2 and tables 1, 2, 3 and 4.)
\[\varphi(\alpha_1, \alpha_2, \ldots, \alpha_k) \] (4)

Transfinite Veblen functions (See Section 4.3.3 and tables 5 and 6.)
\[\varphi_\gamma(\alpha_1, \alpha_2, \ldots, \alpha_m) \] (5)

Countable admissible ordinals (See Section 4.5.1 and tables 7, 8 and 9.)
\[\omega_\kappa \] (6)
\[\omega_\kappa[\eta] \] (7)
\[\omega_{\kappa,\gamma}(\alpha_1, \alpha_2, \ldots, \alpha_m) \] (8)

Projection on countable admissible ordinals (See Section 4.5.2 and tables 10, 11 and 12.)
\[[[\delta]]\omega_\kappa \] (9)
\[[[\delta]]\omega_\kappa[\eta] \] (10)
\[[[\delta]]\omega_\kappa[\eta] \] (11)
\[[[\delta]]\omega_{\kappa,\gamma}(\alpha_1, \alpha_2, \ldots, \alpha_m) \] (12)

Nested ordinal projection (See Section 4.6, tables 13, 14, 15, 16, 17 and Figure 1.)
\[[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]\omega_\kappa \] (13)
\[[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]\omega_\kappa[\eta] \] (14)
\[[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]\omega_\kappa[\eta] \] (15)
\[[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]\omega_{\kappa,\gamma}(\alpha_1, \alpha_2, \ldots, \alpha_k) \] (16)
The \(\sigma_k \) \(k = 1, 2, \ldots, m \) are optional.

Figure 2: Ordinal calculator notation \LaTeX{} format
Cantor normal form (See Section 4.2).

\[\alpha_1 > \alpha_2 > \alpha_3 > ... > \alpha_k \]

\(\alpha \) and the \(\alpha_i \) are ordinal notations, \(n_i \) are nonzero integers

\[w^a_1 n_1 + w^a_2 n_2 + w^a_3 n_3 + ... + w^a_k n_k \quad (3) \]

Finite parameter Veblen functions (See sections 4.3.1, 4.3.2 and tables 1, 2, 3 and 4.)

\[\psi(\alpha_1, \alpha_3, ..., \alpha_k) \quad (4) \]

Transfinite Veblen functions (See Section 4.3.3 and tables 5 and 6.)

\[\psi_{g}(\alpha_1, \alpha_2, ..., \alpha_k) \quad (5) \]

Countable admissible ordinals (See Section 4.5.1 and tables 7, 8 and 9.)

\[w_{k} \quad (6) \]

\[w_{k}[e] \quad (7) \]

\[w_{k,g}(\alpha_1, \alpha_2, ..., \alpha_k) \quad (8) \]

Projection on countable admissible ordinals (See Section 4.5.2 and tables 10, 11 and 12.)

\[[\left[d\right]]w_{k} \quad (9) \]

\[[\left[d\right]]w_{k}[e] \quad (10) \]

\[[\left[d\right]]w_{k}[e] \quad (11) \]

\[[\left[d\right]]w_{k,g}(\alpha_1, \alpha_2, ..., \alpha_k) \quad (12) \]

Nested ordinal projection (See Section 4.6, tables 13, 14, 15, 16, 17 and Figure 1.)

\[[[d_1/s_1,d_2/s_2,...,d_m/s_m]]w_{k} \quad (13) \]

\[[[d_1/s_1,d_2/s_2,...,d_m/s_m]]w_{k}[e] \quad (14) \]

\[[[d_1/s_1,d_2/s_2,...,d_m/s_m]]w_{k}[e] \quad (15) \]

\[[[d_1/s_1,d_2/s_2,...,d_m/s_m]]w_{k,g}(\alpha_1, \alpha_2, ..., \alpha_k) \quad (16) \]

The “/sk” \(k=1,2, ..., m \) are optional.

Figure 3: Ordinal calculator notation plain text format
Skolem theorem proved that a first order formal system, such as ZF, that has a model must have a countable model. This raises questions about the nature of the uncountable in mathematics. The views of three logicians show the range of interpretations offered in response to these issues.

Paul J. Cohen, who proved that the negation of CH (Continuum Hypothesis) is consistent with ZF if ZF is consistent, draws a boundary between sets definable by properties of the integers and other infinite sets[11, p. 10].

There certainly are some cases in which the use of infinite sets presents no essential difficulties. For example, to say that a property holds for all integers or that it holds for all members of the set of integers, is clearly equivalent. Similarly, to say \(n \) belongs to the set of even integers is equivalent to saying that \(n \) is even. Thus the use of some sets can be avoided by referring back to a suitable property. If this could always be done we would have no problem.

Cohen goes on in this paper and another published decades later to declare that he is a formalist when it comes to the uncountable[12, p. 2416].

Does set theory, once we get beyond the integers, refer to an existing reality, or must it be regarded, as formalists would regard it, as an interesting formal game?

Table 12: Example notations using projection

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\alpha.\text{limitElement}(n))</th>
<th>(n=1)</th>
<th>(n=2)</th>
<th>(n=3)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([1] \omega_1[1])</td>
<td>(\omega)</td>
<td>(\omega_1[\omega])</td>
<td>(\omega_1[\omega_1[\omega]])</td>
<td>DCBO</td>
<td></td>
</tr>
<tr>
<td>([1] \omega_1[2])</td>
<td>([1] \omega_1[1])</td>
<td>(\omega_1[[1] \omega_1[1]])</td>
<td>(\omega_1[\omega_1[[1] \omega_1[1]]])</td>
<td>DCCS</td>
<td></td>
</tr>
<tr>
<td>([1] \omega_1(1))</td>
<td>([1] \omega_1)</td>
<td>(\varphi[[1] \omega_1+1])</td>
<td>(\varphi_0[[1] \omega_1+1])</td>
<td>LECK</td>
<td></td>
</tr>
<tr>
<td>([1] \omega_5[3])</td>
<td>([1] \omega_5[2])</td>
<td>([1] \omega_5[[1] \omega_5[2]])</td>
<td>([1] \omega_5[[1] \omega_5[[1] \omega_5[2]]])</td>
<td>DCCS</td>
<td></td>
</tr>
<tr>
<td>([2] \omega_2(1))</td>
<td>([2] \omega_2)</td>
<td>(\omega_1[[2] \omega_2+1])</td>
<td>(\omega_1,\omega_1[[2] \omega_2+1])</td>
<td>LECK</td>
<td></td>
</tr>
<tr>
<td>([2] \omega_3(1))</td>
<td>([2] \omega_3)</td>
<td>([2] \omega_2[[2] \omega_3+1])</td>
<td>([2] \omega_2[[2] \omega_2[[2] \omega_3+1+1])</td>
<td>LCDP</td>
<td></td>
</tr>
<tr>
<td>([3] \omega_3[1])</td>
<td>(\omega)</td>
<td>(\omega_3[\omega])</td>
<td>(\omega_3[\omega_3[\omega]])</td>
<td>DCBO</td>
<td></td>
</tr>
<tr>
<td>([5] \omega_\omega)</td>
<td>([5] \omega_6)</td>
<td>([5] \omega_7)</td>
<td>([5] \omega_8)</td>
<td>LEEE</td>
<td></td>
</tr>
</tbody>
</table>

33 The Continuum Hypothesis states that there is no set larger than the integers (that the integers cannot be mapped onto) and smaller then the reals (and that cannot be mapped onto the reals). Gödel proved that ZF+CH was consistent if ZF is consistent. Cohen proved that ZF+\(\neg \text{CH} \) was consistent if ZF is consistent.
1. \(S(\zeta) \equiv \zeta\) is a successor notation.

2. \(L(\zeta) \equiv \zeta\) is a limit notation.

3. \(\zeta^\sim\) is defined if the least significant nonzero parameter in notation \(\zeta\) is a successor. \(\zeta^\sim\) is identical with \(\zeta\) except the least significant nonzero parameter is decremented by 1.

4. \(\zeta[[\sim]]\) is defined if \(\zeta\) meets the conditions for defining a next least prefix in Table 14. \(\zeta[[\sim]]\) is the prefix of \(\zeta\) modified as defined by this table. All definitions in this table that contain double square brackets define prefixes.

5. \(D(X)\) means \(X\) is defined. This applies to conditional definitions 3 and 4.

6. \(\zeta[[\sim,\beta]]\) is identical with \(\zeta[[\sim]]\) except \(\delta_m\) must the least significant nonzero prefix parameter in \(\zeta\) and \(\beta\) is appended to the prefix defined in Table 14 as \(\sigma_{m+1}\). There is an exception. Nothing is appended if the prefix from the table is shorter than the prefix in \(\zeta\). A shorter prefix means the only legal way to decrement the prefix is to shorten it.

7. le is an abbreviation for limitElement.

8. lo is an abbreviation for limitOrd.

9. il is an abbreviation for increasingLimit. The routine, il(\(\delta_m, \gamma\)) outputs increasing values > \(\delta_m\) for increasing \(\gamma\). This is needed to insuire that the output of le and lo produce increasing outputs for increasing inputs.

<table>
<thead>
<tr>
<th>Table 13: Conventions used in tables 14, 15 and 16</th>
</tr>
</thead>
</table>

Table 14: Next least prefix

<table>
<thead>
<tr>
<th>(\delta_{m-1}) and (\delta_m)</th>
<th>(\sigma_{m-1}) and (\sigma_m)</th>
<th>Next least prefix</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_m = \delta_{m-1})</td>
<td>(\sigma_m = \sigma_{m-1} + 1)</td>
<td>([\delta_1, \sigma_1, \ldots, \delta_{m-1}, \sigma_{m-1}])</td>
<td>11</td>
</tr>
<tr>
<td>(\delta_m = \delta_{m-1})</td>
<td>(\sigma_m > \sigma_{m-1} + 1)</td>
<td>([\delta_1, \sigma_1, \ldots, \delta_{m-1}, \sigma_{m-1}, \delta_m, \sigma_m - 1])</td>
<td>5</td>
</tr>
<tr>
<td>((\delta_m > \delta_{m-1}) \lor (m = 1))</td>
<td>(S(\sigma_m))</td>
<td>([\delta_1, \sigma_1, \ldots, \delta_{m-1}, \sigma_{m-1}, \delta_m, \sigma_m - 1])</td>
<td>2, 3, 15</td>
</tr>
<tr>
<td>((\delta_m + 1 = \delta_{m-1}) \land L(\delta_{m-1}))</td>
<td>(\sigma_m = \sigma_{m-1} = 0)</td>
<td>([\delta_1, \sigma_1, \ldots, \delta_{m-1}, \delta_{m-1}])</td>
<td>4</td>
</tr>
<tr>
<td>((\delta_m + 1 = \delta_{m-1}) \land S(\delta_{m-1}))</td>
<td>(\sigma_m = 0)</td>
<td>([\delta_1, \sigma_1, \ldots, \delta_{m-1}, \sigma_{m-1}, \delta_m, \sigma_m - 1 + 1])</td>
<td>16, 23, 24</td>
</tr>
</tbody>
</table>

Table 14: Next least prefix
Definition of $\zeta = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]] \omega_\kappa[[\eta]]$

if $(\sigma_1 > 0 \lor m > 1) \land \eta > 0 \land \kappa = \delta_m \land D(\zeta^-) \land D(\zeta[\llbracket-\rrbracket])$.

See Table 13 for conventions. The L column is example line(s) in Table 17.

<table>
<thead>
<tr>
<th>Conditions on ζ</th>
<th>$\zeta \leq (1)$</th>
<th>$\zeta \leq (n+1)$</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(\sigma_m) \land \eta > 1$</td>
<td>ζ^-</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>6 12 33</td>
<td>DQB, DQE, DQC</td>
</tr>
<tr>
<td>$S(\sigma_m) \land \eta = 1$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>15 11 32</td>
<td>DQA, DQB, DQE, DQC</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\delta_m) \land \eta > 1$</td>
<td>ζ^-</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>10 21</td>
<td>DQB, DQQ</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\delta_m) \land \eta = 1 \land \delta_m > \delta_m-1 + 1$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>7</td>
<td>DQB</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\delta_m) \land \eta = 1 \land \delta_m = \delta_m-1 + 1$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>16</td>
<td>DQB</td>
</tr>
</tbody>
</table>

Definition of $\zeta = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]] \omega_k[[\alpha]]$

if $(\sigma_1 > 0 \lor m > 1) \land \kappa = \delta_m \land D(\zeta^-) \land D(\zeta[\llbracket-\rrbracket])$.

<table>
<thead>
<tr>
<th>Conditions on ζ</th>
<th>$\zeta \leq (1)$</th>
<th>$\zeta \leq (n+1)$</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(\sigma_m) \land \alpha > 1$</td>
<td>ζ^-</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>21 27</td>
<td>PLEC, PLED</td>
</tr>
<tr>
<td>$S(\sigma_m) \land \alpha = 1$</td>
<td>ζ^-</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>30</td>
<td>PLED</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\delta_m) \land \alpha > 1$</td>
<td>ζ^-</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>28</td>
<td>PLEE</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\delta_m) \land \alpha = 1 \land \delta_m > \delta_m-1 + 1$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>37</td>
<td>PLEE</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\delta_m) \land \alpha = 1 \land \delta_m = \delta_m-1 + 1$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k$</td>
<td>$\zeta[\llbracket-\rrbracket] \omega_k \zeta \leq (n)$</td>
<td>36</td>
<td>PLEE</td>
</tr>
</tbody>
</table>

Table 15: Rules that change $[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]$ by decrementing it.

Definition of $\zeta = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]] \omega_k$ for $(\langle L(\sigma_m) \land \sigma_m = 0 \rangle \lor L(\sigma_m)) \land \delta_m = \kappa$.

See Table 13 for conventions. The L column is example line(s) in Table 17.

<table>
<thead>
<tr>
<th>δ and σ</th>
<th>$\zeta . \text{limitOrd} (\beta)$</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_m = 0 \land S(\sigma_m) \land \delta_m-1 < \kappa$</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m-1, \sigma_m-1, \kappa, \sigma_m, \beta]] \omega_k$</td>
<td>29</td>
<td>NEF</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\sigma_m) \land \delta_m-1 = \kappa$</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m-1, \sigma_m-1, \kappa, \sigma_m-1 + \sigma_m, \beta]] \omega_k$</td>
<td>35</td>
<td>NEF</td>
</tr>
<tr>
<td>$L(\delta_m) \land \sigma_m = 0$</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m-1, \sigma_m-1, \delta_m-1 + \kappa, \beta]] \omega_{\delta_m-1 + \kappa, \beta}$</td>
<td>26</td>
<td>NEG</td>
</tr>
</tbody>
</table>

Definition of $\zeta = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]] \omega_k[[\alpha]]$ for $S(\alpha) \land ((L(\delta_m) \land \sigma_m = 0) \lor L(\sigma_m))$.

<table>
<thead>
<tr>
<th>δ and σ (\delta_m = \kappa)</th>
<th>$\zeta . \text{limitOrd} (\beta)$</th>
<th>L</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_m = 0 \land S(\sigma_m) \land \delta_m-1 < \kappa$</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m-1, \sigma_m-1, \kappa, \sigma_m, \beta]] \omega_k[[\alpha]]$</td>
<td>41</td>
<td>NEB</td>
</tr>
<tr>
<td>$\sigma_m = 0 \land S(\sigma_m) \land \delta_m-1 = \kappa$</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m-1, \sigma_m-1, \kappa, \sigma_m-1 + \sigma_m, \beta]] \omega_k[[\alpha]]$</td>
<td>34</td>
<td>NEB</td>
</tr>
<tr>
<td>$L(\delta_m) \land \sigma_m = 0$</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m-1, \sigma_m-1, \delta_m-1 + \kappa, \beta]] \omega_{\delta_m-1 + \kappa, \beta}[[\alpha]]$</td>
<td>25</td>
<td>NEC</td>
</tr>
</tbody>
</table>

Table 16: Rules that change $[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]$ by taking a limit.
<table>
<thead>
<tr>
<th>α</th>
<th>n=1</th>
<th>α.limitElement(n)</th>
<th>n=2</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[1,1]</td>
<td>[1,1]</td>
<td>[1,1]</td>
<td>DQA</td>
</tr>
<tr>
<td>2</td>
<td>[1,3]</td>
<td>[1,3]</td>
<td>[1,3]</td>
<td>DQB</td>
</tr>
<tr>
<td>3</td>
<td>[1,3]</td>
<td>[1,3]</td>
<td>[1,3]</td>
<td>DQB</td>
</tr>
<tr>
<td>4</td>
<td>[1,3]</td>
<td>[1,3]</td>
<td>[1,3]</td>
<td>DQB</td>
</tr>
<tr>
<td>5</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>DQB</td>
</tr>
<tr>
<td>6</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>DQB</td>
</tr>
<tr>
<td>7</td>
<td>[2,4]</td>
<td>[2,4]</td>
<td>[2,4]</td>
<td>DQB</td>
</tr>
<tr>
<td>8</td>
<td>[2,5]</td>
<td>[2,5]</td>
<td>[2,5]</td>
<td>LEDE</td>
</tr>
<tr>
<td>9</td>
<td>[2,5]</td>
<td>[2,5]</td>
<td>[2,5]</td>
<td>DQB</td>
</tr>
<tr>
<td>10</td>
<td>[2,5]</td>
<td>[2,5]</td>
<td>[2,5]</td>
<td>DQB</td>
</tr>
<tr>
<td>11</td>
<td>[2,3,3]</td>
<td>[2,3,3]</td>
<td>[2,3,3]</td>
<td>DQE</td>
</tr>
<tr>
<td>12</td>
<td>[2,3,3]</td>
<td>[2,3,3]</td>
<td>[2,3,3]</td>
<td>DQE</td>
</tr>
<tr>
<td>13</td>
<td>[2,3,3]</td>
<td>[2,3,3]</td>
<td>[2,3,3]</td>
<td>DCBO</td>
</tr>
<tr>
<td>14</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>NEF</td>
</tr>
<tr>
<td>15</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>DQB</td>
</tr>
<tr>
<td>16</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>DQB</td>
</tr>
<tr>
<td>17</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>NEG</td>
</tr>
<tr>
<td>18</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>LEEE</td>
</tr>
<tr>
<td>19</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>LEEE</td>
</tr>
<tr>
<td>20</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>LEEE</td>
</tr>
<tr>
<td>21</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>PLEC</td>
</tr>
<tr>
<td>22</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>DCCS</td>
</tr>
<tr>
<td>23</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>DCCS</td>
</tr>
<tr>
<td>24</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>[3,4]</td>
<td>DCCS</td>
</tr>
<tr>
<td>25</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEF</td>
</tr>
<tr>
<td>26</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEF</td>
</tr>
<tr>
<td>27</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>PLED</td>
</tr>
<tr>
<td>28</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>PLED</td>
</tr>
<tr>
<td>29</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>PLED</td>
</tr>
<tr>
<td>30</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>PLED</td>
</tr>
<tr>
<td>31</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>PLED</td>
</tr>
<tr>
<td>32</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>PLED</td>
</tr>
<tr>
<td>33</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>DQG</td>
</tr>
<tr>
<td>34</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
<tr>
<td>35</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
<tr>
<td>36</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
<tr>
<td>37</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
<tr>
<td>38</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
<tr>
<td>39</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
<tr>
<td>40</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
<tr>
<td>41</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>[3,5]</td>
<td>NEE</td>
</tr>
</tbody>
</table>

Table 17: Nested embed ordinal notations in increasing order
... Through the years I have sided more firmly with the formalist position. This view is tempered with a sense of reverence for all mathematics which has used set theory as a basis, and in no way do I attack the work which has been done in set theory.

It is interesting to contrast this view with two alternatives. Solomon Feferman, the principle editor of Gödel’s collected works, argues that the objectivity of mathematics stems from inter-subjective human conceptions[15].

... I think the Platonistic philosophy of mathematics that is currently claimed to justify set theory and mathematics more generally is thoroughly unsatisfactory and that some other philosophy grounded in inter-subjective human conceptions will have to be sought to explain the apparent objectivity of mathematics.

In a later paper he describes in detail why he believes the Continuum Hypothesis is too vague to be definitely true or false and elaborates on his proposal of Conceptual Structuralism as a basis for mathematical objectivity. He emphasizes that human conceptual creations, such as money, are objective. He thinks mathematics falls in this category[16].

Finally there is the proposal by Hamkins of a Platonic multiverse[19].

In this article, I shall argue for a contrary position the multiverse view, which holds that there are diverse distinct concepts of set, each instantiated in a corresponding set-theoretic universe, which exhibit diverse set-theoretic truths. Each such universe exists independently in the same Platonic sense that proponents of the universe view regard their universe to exist.

This illustrates the wide range of views among logicians. I think there is a grain of truth in all three of these views starting with the objectivity of properties of the integers (or equivalently TMs). Much of mathematics can be defined as properties of recursive processes including divergent properties that may involve quantification over the reals. Each of these properties is logically determined by a recursively enumerable sequence of events. These sequences can only be generated by computers that run forever error free with unlimited storage. That ideal does not exist, but, as technology progresses, the ideal computer can be approximated for ever more execution steps with ever greater probability of being error free.

For me the objective basis of mathematics lies in physical reality. However the objective relationships between recursively enumerable events are human conceptual creations. For example a TM halting can be a physical event, but the general concept of the halting problem for TMs is a human conceptual creation connected to physical reality, but not corresponding to any specific physical event. The halting problem is at the root of a hierarchy of relationships determined by a recursively enumerable sequence of events that matches a mathematical hierarchy.

4.7.1 Properties of the integers

This hierarchy of mathematics starts with the arithmetical and hyperarithmetical hierarchies which have an interpretation as generalizations of the computer halting problem.

34 Statements in the arithmetical hierarchy are those with a finite number of quantifiers (\(\forall\) and \(\exists\)) over the integers on a recursive relationship. The hyperarithmetical hierarchy, loosely speaking, iterates this definition.
Every Π_2 statement is equivalent to the question does a particular TM have an infinite number of outputs. This is implied by the U quantifier. $U_x r(x)$ is true iff $r(x)$, a recursive relation, is true on an infinite subset of the integers. $\forall n_1 \exists n_2 r_1(n_1, n_2)$ can be replaced with $U_n r_2(n)$ where r_1 and r_2 are recursive relations[25]. It is straightforward to generate r_2 from r_1. Further every Π_4 statement is equivalent to the question does a particular TM have an infinite number of outputs an infinite subset of which are the Gödel numbers of TMs that have an infinite number of outputs. This can be generalized to define Π_{2n} statements for any integer n and iterated up to any recursive ordinal to define any hyperarithmetical statement.

Going further, Kleene’s O is defined by properties of TMs, albeit properties that require quantification over the reals. The set of all members of O is a Π^1_1 complete set[31]. Finally, the limit of the countable admissible ordinals is the first uncountable ordinal and these are defined as Kleene’s O is defined for TMs with an oracle for smaller admissible ordinals[1].

4.7.2 The reals

Does a TM that accepts an arbitrarily long sequence of integer inputs halt for every possible sequence? This question is logically determined by a recursively enumerable sequence: which finite sequences of inputs cause the TM to halt. A nondeterministic TM36 can enumerate all of these events. If the sequences that halt include an initial segment of every real number than the answer is yes and no otherwise. Some initial segments obviously cover every possible real number. For the binary reals less than 1, the decimal fractions that start with .0 and .1 cover every real number.

Some statements that require quantification over the reals are about properties of a TM along divergent paths such that every event that determines the outcome is logically determined and recursively enumerable. These statements are objectively true or false. This is not true for other statements reals such as the Continuum Hypothesis. Like the three logicians quoted in Section 4.7, I doubt that that the Continuum Hypothesis has a definite truth value. I draw the line with processes that are logically determined by a recursively enumerable sequence of events. That definition clearly includes many statements and excludes many others. However it is not precise enough to define exactly what statements are included. From Gödel we know that every mathematical system of sufficient strength will be incomplete with respect to provability. I think it will also be incomplete with respect to definability.

In light of the Lowenheim-Skolem theorem and at least relative to an always finite but potentially infinite universe Cantor’s proof that the reals are not countable is an incompleteness theorem. It cannot tell us something about the relative size of completed infinite totalities if no such thing exists. This interpretation suggests that the cardinal numbers are not definite sets but reflect ways the countable sets can always be expanded in a “correct” formal system. For example in a Löwenheim-Skolem derived countable model for ZF all the sets that are seen as uncountable within ZF are countable in the model.

35A set is Π^1_1 complete if a TM with an oracle for this set can decide any Π^1_1 statement.

36A nondeterministic TM simulates all the TMs with Gödel numbers in a specified recursively enumerable sequence. It is straightforward to write a single TM program that does exactly what every one of these individual TMs do for every time step.
4.7.3 Expanding mathematics

Cohen concludes his second philosophical paper on a pessimistic note[12, p. 2418].

I believe that the vast majority of statements about the integers are totally and permanently beyond proof in any reasonable system. ...

In this pessimistic spirit, I may conclude by asking if we are witnessing the end of the era of pure proof, begun so gloriously by the Greeks. I hope that mathematics lives for a very long time, and that we do not reach that dead end for many generations to come.

There is a way to explore all objective mathematical truth in an always finite but unbounded universe. With no limits, civilization can try everything. That may seem absurd but it appears to be how the mathematically capable human mind evolved. It is doubtful that this could have happened in a world that was significantly less diverse than ours. Of course biological evolution has only a small random component. Mostly it builds on itself. Over billions of years, random perturbations have created humanity with the ability to understand where we came from and perhaps to choose where we go.

One can extend mathematics in a similar selective and divergent way. The multiverse of Hamkins may not be a Platonic reality, but a partial map of the possible ways in which mathematics can be extended. It is essential that we build on what exists but extend this with ever expanding diversity. Otherwise we will run into a what I call a Gödel limit. This is a sequence of ever more powerful mathematical models all of which may eventually be discovered in a single path of mathematical exploration and development that extends forever. However all of the results are subsumed by a single more powerful result that will never be discovered inside the Gödel limit. The only way to avoid a Gödel limit is through an unbounded expansion of diversity.

Why would it be worth the effort to explore this mathematics? Existing mathematics goes far beyond what is commonly used in science and engineering[15]. The answer to this question takes us outside of mathematics to questions of ultimate meaning and value. Bertrand Russell in 1927 at the end of the *Analysis of Matter* observed that intrinsic nature and by implication intrinsic value only exists in conscious experience.

As regards the world in general, both physical and mental, everything that we know of its intrinsic character is derived from the mental side, and almost everything that we know of its causal laws is derived from the physical side. But from the standpoint of philosophy the distinction between physical and mental is superficial and unreal[32, p. 402].

Science first abandoned the fundamental substances of earth, air, fire and water and later Newtonian billiard balls for pure mathematical models lacking any fundamental substance. This is made explicit in set theory where the fundamental entity is the empty set or nothing at all. Intrinsic nature and thus meaning and value exists only in conscious experience.

Nonetheless the evolution of consciousness has been an evolution of structure. Reproducing molecules have evolved to create the depth and richness of human consciousness. They have also evolved to the point where we can take conscious control over future human
evolution. Human genetic engineering has already begun as a way to cure or prevent horrible
diseases. Over time the techniques will be perfected to the point where one may consider
using them for human enhancement. We will need to have a sense of meaning and values
that is up to the challenge this capability presents.

The depth and richness of human consciousness seems to require the level of abstraction
and self reflection that has evolved. These seem necessary for both richness of human con-
sciousness and the ability to create mathematics. The ordinal numbers are the backbone of
mathematics determining what problems are decidable and what objects are definable in a
mathematical system. Do they also impose limits on the depth and richness of human con-
sciousness? If so than diversity is critical to the unbounded exploration of possible conscious
experience. This possibility is explored in a video Mathematical Infinity and Human Destiny
and a book[4].

5 Program structure

The C++ programming language\(^{37}\) has two related features, subclasses and virtual functions
that are useful in developing ordinal notations. The base class, Ordinal, is an open ended
programming structure that can be expanded with subclasses. It does not represent a specific
set of ordinals and it is not limited to notations for recursive ordinals. Any function that
takes Ordinal as an argument must allow any subclass of Ordinal to be passed to it as an
argument.

5.1 virtual functions and subclasses

Virtual functions facilitate the expansion of the base class. For example there is a base
class virtual member function compare that returns 1, 0, or -1 if its argument (which
must be an element of class Ordinal) is less than, equal to or greater than the ordinal
notation it is a member function of. The base class defines notations for ordinals less
than \(\varepsilon_0\). As the base class is expanded, an extension of the compare virtual function
must be written to take care of cases involving ordinals greater than \(\varepsilon_0\). Programs that call
the compare function will continue to work properly. The correct version of compare will
automatically be invoked depending on the type of the object (ordinal notation) from which
compare is called. The original compare does not need to be changed but it does need to be
written with the expansion in mind. If the argument to compare is not in the base class
then the expanded function must be called. This can be done by calling compare recursively
using the argument to the original call to compare as the class instance from which compare
is called.

It may sound confusing to speak of subclasses as expanding a definition. The idea is that
the base class is the broadest class including all subclasses defined now or that might be
defined in the future. The subclass expands the objects in the base class by defining a

\(^{37}\)C++ is an object oriented language combining functions and data in a class definition. The data and
code that form the class are referred to as class members. Calls to nonstatic member functions can only
be made from an instance of the class. Data class members in a member function definition refer to the
particular instance of the class from which the function is called.
limited subset of new base class objects that are the only members of the subclass (until and unless it gets expanded by its own subclasses). This is one way of dealing with the inherent incompleteness of a computational approach to the ordinals.

5.2 Ordinal normal forms

Crucial to developing ordinal notations is to construct a unique representation for every ordinal. The starting point for this is the Cantor normal form. Every ordinal, \(\alpha \), can be represented by an expression of the following form:

\[
\alpha = \omega^{\alpha_1}n_1 + \omega^{\alpha_2}n_2 + \omega^{\alpha_3}n_3 + ... + \omega^{\alpha_k}n_k
\]

(17)

\[
\alpha_1 > \alpha_2 > \alpha_3 > ... > \alpha_k
\]

The \(\alpha_k \) are ordinal notations and the \(n_k \) are integers > 0.

Because \(\varepsilon_0 = \omega^{\varepsilon_0} \) the Cantor normal form gives unique representation only for ordinals less than \(\varepsilon_0 \). This is handled by requiring that the normal form notation for a fixed point ordinal be the simplest expression that represents the ordinal. For example, A notation for the Veblen hierarchy used in this paper (see Section 7) defines \(\varepsilon_0 \) as \(\varphi(1,0) \). Thus the normal form for \(\varepsilon_0 \) would be \(\varphi(1,0)^{38} \) not \(\omega^{\varphi(1,0)} \). Note \(\varphi(1,0)^2 \) is displayed as \(\omega^{\varepsilon_0^2} \).

The Ordinal base class represents an ordinal as a linked list of terms of the form \(\omega^{\alpha_k}n_k \). This limits the base class to ordinals of the form \(\omega^\alpha \) where \(\alpha \) is a previously defined member of the base class. These are the ordinals less than \(\varepsilon_0 \). For larger ordinals we must define subclasses. The base class for each term of an Ordinal is CantorNormalElement and again subclasses are required to represent ordinals larger than or equal to \(\varepsilon_0 \).

5.3 Memory management

Most Ordinals are constructed from previously defined ones. Those constructions need to reference the ordinals used in defining them. These must not be deleted while the object that uses them still exists. This usually requires that Ordinals be created using the new C++ construct. Objects declared without using new are automatically deleted when the block in which they occur exits. This program does not currently implement any garbage collection. Ordinals created with new are not deleted until the program exits or the user explicitly deletes them. With the size of memory today this is usually not a problem but eventually a new version of the program should free space no longer being used.

6 Ordinal base class

All ordinal notations defined now or in the future in this system are include in base class, Ordinal. With no subclasses only notations for ordinals < \(\varepsilon_0 \) are defined. Sections 8 9.

38In the ordinal calculator \(\varphi(1,\alpha) \) is displayed as \(\varepsilon_\alpha \).

39Ordinal when capitalized and in tty font, refers to the expandable C++ class of ordinal notations.
11 and 13 describe subclasses that extend the notation system to large recursive ordinals and to countable admissible ordinals.

The finite Ordinals and ω are defined using the constructor\footnote{The constructor of a class object is a special member function that creates an instance of the class based on the its parameters.} for class Ordinal\footnote{The integer ordinals are not defined in this program using the C++ int data type but a locally defined Int data type that uses the Mpir offshoot of the Gnu Multiple Precision Arithmetic Library to allow for arbitrarily large integers depending on the memory of the computer the program is run on.}. Other ordinals $< \varepsilon_0$ are usually defined with addition, multiplication and exponentiation of previously defined Ordinals (see Section 6.4).

The Ordinal for 12 is written as “\texttt{const Ordinal& twelve = * new Ordinal(12)}”\footnote{In the interactive ordinal calculator (see Appendix B) write “\texttt{twelve = 12}” or just use 12 in an expression.} in C++. The Ordinals for zero, one and omega are defined in global name space ord\footnote{All global variables in this implementation are defined in the namespace ord. This simplifies integration with existing programs. Such variables must have the prefix ‘ord::’ prepended to them or occur in a file in which the statement “\texttt{using namespace ord;}” occurs before the variable is referenced.}. The Ordinals two through six are defined as members of class Ordinal\footnote{Reference to members of class Ordinal must include the prefix “\texttt{Ordinal::}” except in member functions of Ordinal}.

The standard operations for ordinal arithmetic (+, \times for \times and \uparrow for exponentiation) are defined for all Ordinal instances. Expressions involving exponentiation must use parenthesis to indicate precedence because C++ gives lower precedence to \uparrow then it does to addition and multiplication\footnote{The interactive mode of entering ordinal expressions (see Appendix B) has the desired precedence and does not require parenthesis to perform exponentiation before multiplication.}. In C++ the standard use of \uparrow is for the boolean operation exclusive or.

Ordinals that are a sum of terms are made up of a sequence of instances of the class CantorNormalElement each instance of this class contains an integer factor that multiplies the term and an Ordinal exponent of ω. For finite ordinals this exponent is 0.

6.1 normalForm and texNormalForm member functions

Two Ordinal member functions, normalForm and texNormalForm, return a C++ string that can be output to display the value of an Ordinal in Cantor normal form or a variation of it defined here for ordinals $> \varepsilon_0$. normalForm creates a plain text format that is used...
for input and output in the interactive mode of this program. \texttt{texNormalForm} outputs a similar \texttt{string} in \TeX{} math mode format. This \texttt{string} does \texttt{not} include the `$` markers to enter and exit \TeX{} math mode. These must be added when this output is included in a \TeX{} document. There are examples of this output in Section B.11.3 on \texttt{Display options}. Many of the entries in the tables in this manual are generated using \texttt{texNormalForm}.

6.2 \texttt{compare} member function

The \texttt{compare} function has a single \texttt{Ordinal} as an argument. It compares the \texttt{Ordinal} instance it is a member of with its argument. It scans the terms of both \texttt{Ordinals} (see equation 17) in order of decreasing significance. The \texttt{exponent}, α_k and then the \texttt{factor} n_k are compared. If these are both equal the comparison proceeds to the next term of both ordinals. \texttt{compare} is called recursively to compare the exponents (which are \texttt{Ordinals}) until it resolves to comparing an integer with an infinite ordinal or another integer. It returns 1, 0 or -1 if the ordinal called from is greater than, equal to or less than its argument.

Each term of an ordinal (from Equation 17) is represented by an instance of class \texttt{CantorNormalElement} and the bulk of the work of \texttt{compare} is done in member function \texttt{CantorNormalElement::compare}. This function compares two terms of the Cantor normal form of an ordinal.

6.3 \texttt{limitElement} member function

\texttt{Ordinal} member function \texttt{limitElement} has a single integer parameter. It is only defined for notations of limit ordinals and will abort if called from a successor \texttt{Ordinal}. Larger values of this argument produce larger ordinal notations as output. The union of the ordinals represented by the outputs for all integer inputs is equal to the ordinal represented by the \texttt{Ordinal} instance \texttt{limitElement} is called from. This function satisfies requirement 3 on page 10.

In the following description mathematical notation is mixed with C++ code. Thus \texttt{limitElement(i)} called from an \texttt{Ordinal class} instance that represents ω^α is written as $(\omega^\alpha)\texttt{.limitElement(i)}$.

The algorithm for \texttt{limitElement} uses the Cantor normal form in equation 17. The kernel processing is done in \texttt{CantorNormalElement::limitElement}. \texttt{limitElement} operates on the last or least significant term of the normal form. γ is used to represent all terms but the least significant. If the least significant term is infinite and has a factor, the n_k in equation 17, greater than 1, γ will also include the term $\omega^{\alpha_k}(n_k - 1)$. The outputs from \texttt{limitElement} are γ and a final term that varies according to the conditions in Table 19. Table 20 gives some examples.

6.4 Operators

The operators in the base class are built on the successor (or ‘+1’) operation and recursive iteration of that operation. These are shown in Table 21.
This routine has a single exit code, ‘C’.
See Section 8.2 for more about this.

\[\alpha = \sum_{m=0,1,...,k} \omega^{\alpha_m} n_m \quad \text{from equation 17} \]
\[\gamma = \sum_{m=0,1,...,k-1} \omega^{\alpha_m} n_m + \omega^{\alpha_k} (n_k - 1) \]

<table>
<thead>
<tr>
<th>Last Term ((\omega^{\alpha_k} n_k)) Condition</th>
<th>(\alpha).limitElement(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_k = 0) ((\alpha) is not a limit)</td>
<td>undefined abort</td>
</tr>
<tr>
<td>(\alpha_k = 1)</td>
<td>(\gamma + 1)</td>
</tr>
<tr>
<td>(\alpha_k > 1 \land \alpha_k) is a successor</td>
<td>(\gamma + \omega^{\alpha_k-1} i)</td>
</tr>
<tr>
<td>(\alpha_k) is a limit</td>
<td>(\gamma + \omega^{(\alpha_k).limitElement(1)})</td>
</tr>
</tbody>
</table>

Table 19: Cases for computing \(\text{Ordinal}::\text{limitElement}\)

<table>
<thead>
<tr>
<th>Ordinal</th>
<th>limitElement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>1 2 10 100 786</td>
</tr>
<tr>
<td>(\omega^8)</td>
<td>(\omega^7 + 1) (\omega^7 + 2) (\omega^7 + 10) (\omega^7 + 100) (\omega^7 + 786)</td>
</tr>
<tr>
<td>(\omega^2)</td>
<td>(\omega) (\omega^2) (\omega^10) (\omega^100) (\omega^786)</td>
</tr>
<tr>
<td>(\omega^3)</td>
<td>(\omega^2) (\omega^2) (\omega^2) (\omega^2) (\omega^2)</td>
</tr>
<tr>
<td>(\omega^\omega)</td>
<td>(\omega^\omega) (\omega^\omega) (\omega^\omega) (\omega^\omega) (\omega^\omega)</td>
</tr>
<tr>
<td>(\omega^{\omega^2})</td>
<td>(\omega^{\omega^2}) (\omega^{\omega^2}) (\omega^{\omega^2}) (\omega^{\omega^2}) (\omega^{\omega^2})</td>
</tr>
<tr>
<td>(\omega^{\omega^\omega})</td>
<td>(\omega^{\omega^\omega}) (\omega^{\omega^\omega}) (\omega^{\omega^\omega}) (\omega^{\omega^\omega}) (\omega^{\omega^\omega})</td>
</tr>
</tbody>
</table>

Table 20: \(\text{Ordinal}::\text{limitElement}\) examples.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>(\alpha + \beta)</td>
<td>add 1 to (\alpha) (\beta) times</td>
</tr>
<tr>
<td>multiplication</td>
<td>(\alpha \times \beta)</td>
<td>add (\alpha) (\beta) times</td>
</tr>
<tr>
<td>exponentiation</td>
<td>(\alpha^\beta)</td>
<td>multiply (\alpha) (\beta) times</td>
</tr>
<tr>
<td>nested exponentiation</td>
<td>(\alpha^\gamma)</td>
<td>multiply (\alpha) (\beta) (\gamma) times</td>
</tr>
</tbody>
</table>

Table 21: Base class \(\text{Ordinal}\) operators.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Cantor Normal Form</th>
<th>C++ code</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\omega 4 + 12)\omega)</td>
<td>(\omega^2)</td>
<td>((\omega)4+12)(\omega)</td>
</tr>
<tr>
<td>(\omega(\omega 4 + 12))</td>
<td>(\omega^2)4 + (\omega)12</td>
<td>(\omega)*(\omega)*4+12)</td>
</tr>
<tr>
<td>(\omega^{\omega(\omega 4 + 12)})</td>
<td>(\omega^\omega^\omega)</td>
<td>(\omega)(\omega)(\omega)*4+12)</td>
</tr>
<tr>
<td>((\omega + 4)(\omega + 5))</td>
<td>(\omega^2) + (\omega)5 + 4</td>
<td>(\omega)*4) (\omega)*5)</td>
</tr>
<tr>
<td>((\omega + 2)^{(\omega 4 + 12)})</td>
<td>(\omega^{\omega^2} + \omega^{\omega^4} + \omega^{\omega^2})</td>
<td>(\omega)*4) (\omega)*5)</td>
</tr>
<tr>
<td>((\omega + 3)^{(\omega 4 + 12)})</td>
<td>(\omega^{\omega^3} + \omega^{\omega^4} + \omega^{\omega^2} + \omega^{\omega^3})</td>
<td>(\omega)*4) (\omega)*5)</td>
</tr>
</tbody>
</table>

Table 22: Ordinal arithmetic examples
The operators are addition, multiplication and exponentiation. These are implemented as C++ overloaded operators: +, * and \(^{46}\)Arithmetic on the ordinals is not commutative, \(3 + \omega = \omega \neq \omega + 3\). For this and other reasons, caution is required in writing expressions in C++. Precedence and other rules used by the compiler are incorrect for ordinal arithmetic. It is safest to use parenthesis to completely specify the intended operation. Some examples are shown in Table 22.

6.4.1 Addition

In ordinal addition, all terms of the first operand that are at least a factor of \(\omega\) smaller than the leading term of the second can be ignored because of the following:

\[\alpha, \beta \text{ ordinals } \land \alpha \geq \beta \rightarrow \beta + \alpha \cdot \omega = \alpha \cdot \omega \]

(18)

Ordinal addition operates in sequence on the terms of both operands. It starts with the most significant terms. If they have the same exponents, their factors are added. Otherwise, if the second operand’s exponent is larger than the first operand’s exponent, the remainder of the first operand is ignored. Alternatively, if the second operands most significant exponent is less than the first operands most significant exponent, the leading term of the first operand is added to the result. The remaining terms are compared in the way just described until all terms of both operands have been dealt with.

6.4.2 Multiplication

Multiplication of infinite ordinals is complicated by the way addition works. For example:

\[(\omega + 3) \times 2 = (\omega + 3) + (\omega + 3) = \omega \times 2 + 3 \]

(19)

Like addition, multiplication works with the leading (most significant) terms of each operand in sequence. The operation that takes the product of terms is a member function of base class CantorNormalElement. It can be overridden by subclasses without affecting the algorithm than scans the terms of the two operands. When a subclass of Ordinal is added a subclass of CantorNormalElement must also be added.

CantorNormalElement and each of its subclasses is assigned a codeLevel that grows with the depth of class nesting. codeLevel for a CantorNormalElement is cantorCodeLevel. Any Cantor normal form term that is of the form \(\omega^\alpha\) will be at this level regardless of the level of the terms of \(\alpha\). codeLevel determines when a higher level function needs to be invoked. For example if we multiply \(\alpha\) at cantorCodeLevel by \(\beta\) at a higher level then a higher level routine must be used. This is accomplished by calling \(\beta.multiplyBy(\alpha)\) which will invoke the virtual function multiplyBy in the subclass \(\beta\) is an instance of.

The routine that multiplies two terms or CantorNormalElements first tests the codeLevel of its operand and calls multiplyBy if necessary. If both operands are at cantorCodeLevel, the routine checks if both operands are finite and, if so, returns their integer product. If the first operand is finite and the second is infinite, the second operand is returned unchanged.

\(^{46}\)‘\(^\)’ is used for ‘exclusive or’ in C++ and has lower precedence than any arithmetic operator such as ‘+’. Thus C++ will evaluate \(x^{y+1}\) as \(x^y\cdot (y+1)\). Use parenthesis to override this as in \((x^y)+1\).
All remaining cases are handled by adding the exponents of the two operands and multiplying their factors. The exponents are the α_i and the factors are the n_i in Equation 17. A CantorNormalElement with the computed exponent and factor is returned. If the exponents contain terms higher than cantorCodeLevel, this will be dealt with by the routine that does the addition of exponents.

The routine that multiplies single terms is called by a top level routine that scans the terms of the operands. If the second operand does not have a finite term, then only the most significant term of the first operand will affect the result by Equation 18. If the second operand does end in a finite term then all but the most significant term of the first operand, as illustrated by Equation 19, will be added to the result of multiplying the most significant term of the first operand by all terms of the second operand in succession. Some examples are shown in Table 23.

6.4.3 exponentiation

Ordinal exponentiation first handles the cases when either argument is zero or one. It then checks if both arguments are finite and, if so, does an integer exponentiation. If the base is finite and the exponent is infinite, the product of the infinite terms in the exponent is computed. If the exponent has a finite term, this product is multiplied by the base taken to the power of this finite term. This product is the result.

If the base is infinite and the exponent is an integer, n, the base is multiplied by itself n times. To do this efficiently, all powers of two less than n are computed. The product of those powers of 2 necessary to generate the result is computed.

If both the base and exponent are infinite, then the infinite terms of the exponent are scanned in decreasing sequence. Each is is used as an exponent applied to the most significant term of the base. The sequence of exponentials is multiplied. If the exponent has a finite term then the entire base, not just the leading term, is raised to this finite power using the algorithm described above for a finite exponent and infinite base. That factor is then applied to the previous product of powers.

To compute the above result requires a routine for taking the exponential of a single infinite term of the Cantor normal form i.e. a CantorNormalElement (see Equation 17) by another infinite single term. (When Ordinal subclasses are defined this is the only routine that must be overridden.) The algorithm is to multiply the exponent of ω from the first operand (the base) by the second operand, That product is used as the exponent of ω in the term returned. Table 24 gives some examples with C++ code and some additional examples are shown in Table 25.

7 The Veblen hierarchy

This section gives a brief overview of the Veblen hierarchy and the Δ operator. See [35, 27, 18] for a more a complete treatment. This is followed by the development of a computational

\footnote{A large integer exponent can require more memory than is available to store the result and abort the program.}
<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>$\alpha \times \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega + 1$</td>
<td>$\omega + 1$</td>
<td>$\omega^2 + \omega + 1$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>$\omega + 2$</td>
<td>$\omega^2 + \omega 2 + 1$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>ω^3</td>
<td>ω^4</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>$\omega^32 + 2$</td>
<td>$\omega^42 + \omega 2 + 1$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^5 + \omega^4 + \omega^27 + \omega^3 + 1$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>ω^53</td>
<td>ω^63</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega + 1$</td>
<td>$\omega^2 + \omega + 2$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega + 2$</td>
<td>$\omega^2 + \omega 2 + 2$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>ω^3</td>
<td>ω^4</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega^32 + 2$</td>
<td>$\omega^42 + \omega 2 + 2$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^5 + \omega^4 + \omega^27 + \omega^3 + 2$</td>
</tr>
<tr>
<td>ω^2</td>
<td>ω^53</td>
<td>ω^63</td>
</tr>
<tr>
<td>ω^3</td>
<td>ω^63</td>
<td>$\omega^7 + \omega^6 + \omega^47 + \omega^33$</td>
</tr>
<tr>
<td>$\omega^32 + 2$</td>
<td>$\omega + 1$</td>
<td>$\omega^4 + \omega^32 + 2$</td>
</tr>
<tr>
<td>$\omega^32 + 2$</td>
<td>$\omega + 2$</td>
<td>$\omega^4 + \omega^34 + 2$</td>
</tr>
<tr>
<td>$\omega^32 + 2$</td>
<td>ω^3</td>
<td>ω^6</td>
</tr>
<tr>
<td>$\omega^32 + 2$</td>
<td>$\omega^32 + 2$</td>
<td>$\omega^62 + \omega^34 + 2$</td>
</tr>
<tr>
<td>$\omega^32 + 2$</td>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^7 + \omega^6 + \omega^47 + \omega^36 + 2$</td>
</tr>
<tr>
<td>$\omega^32 + 2$</td>
<td>ω^53</td>
<td>ω^83</td>
</tr>
<tr>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega + 1$</td>
<td>$\omega^5 + \omega^4 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega + 2$</td>
<td>$\omega^5 + \omega^42 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>ω^3</td>
<td>ω^7</td>
</tr>
<tr>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^32 + 2$</td>
<td>$\omega^72 + \omega^42 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^8 + \omega^7 + \omega^57 + \omega^43 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>ω^63</td>
<td>$\omega + 1$</td>
<td>ω^83</td>
</tr>
<tr>
<td>ω^63</td>
<td>$\omega + 2$</td>
<td>$\omega^8 + \omega^7 + \omega^57 + \omega^43 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>ω^63</td>
<td>ω^3</td>
<td>$\omega^8 + \omega^7 + \omega^57 + \omega^43 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>ω^63</td>
<td>$\omega^32 + 2$</td>
<td>$\omega^8 + \omega^7 + \omega^57 + \omega^43 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>ω^63</td>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^8 + \omega^7 + \omega^57 + \omega^43 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>ω^63</td>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^8 + \omega^7 + \omega^57 + \omega^43 + \omega^3 + \omega^7 + 3$</td>
</tr>
<tr>
<td>ω^23</td>
<td>$\omega^4 + \omega^3 + \omega^7 + 3$</td>
<td>$\omega^8 + \omega^7 + \omega^57 + \omega^43 + \omega^3 + \omega^7 + 3$</td>
</tr>
</tbody>
</table>

Table 23: Ordinal multiply examples
The Veblen hierarchy extends the recursive ordinals beyond ε_0. A Veblen hierarchy can be constructed from any strictly increasing continuous function\(^48\) f, whose domain and range are the countable ordinals such that $f(0) > 0$. $f(x) = \omega^x$ satisfies these conditions and is the starting point for constructing the standard Veblen hierarchy. One core idea is to define a new function from an existing one so that the new function enumerates the fixed points of the first one. A fixed point of f is a value v such that $f(v) = v$. Given an infinite sequence of such functions one can define a new function that enumerates the common fixed points of all functions in the sequence. In this way one can iterate the construction of a new function up to any countable ordinal. The Veblen hierarchy based on $f(x) = \omega^x$ is written as $\varphi(\alpha, \beta)$ and defined as follows.

- $\varphi(0, \beta) = \omega^\beta$.
- $\varphi(\alpha + 1, \beta)$ enumerates the fixed points of $\varphi(\alpha, \beta)$.
- $\varphi(\alpha, \beta)$ for α a limit ordinal, α, enumerates the intersection of the fixed points of $\varphi(\gamma, \beta)$ for γ less than α.

From a Veblen hierarchy of the above sort, one can define a diagonalization function $\varphi(x, 0)$ from which a new Veblen hierarchy can be constructed. This can be iterated and the Δ operator does this in a powerful way.

7.1 The delta operator

The Δ operator is defined as follows\(^{27, 18}\).

- $\Delta_0(\psi)$ enumerates the fixed points of the normal (continuous and strictly increasing) function on the ordinals ψ.

\(^{48}\) A continuous function, f, on the ordinals must map limits to limits. Thus for every infinite limit ordinal y, $f(y) = \sup\{f(v) : v < y\}$. A continuous strictly increasing function on the ordinals is called a normal function.
<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>α^β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega + 1$</td>
<td>$\omega + 1$</td>
<td>$\omega^{\omega + 1} + \omega$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>$\omega + 2$</td>
<td>$\omega^{\omega + 2} + \omega$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>ω^3</td>
<td>ω^3</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>$\omega^4 + 3$</td>
<td>$\omega^{\omega^4 + 3} + \omega^{\omega^4 + 2} + \omega^{\omega^4 + 1} + \omega^{\omega^4}$</td>
</tr>
<tr>
<td>$\omega + 1$</td>
<td>ω^ω</td>
<td>$\omega^{\omega\omega}$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega + 1$</td>
<td>$\omega^{\omega + 1} + \omega^2$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega + 2$</td>
<td>$\omega^{\omega + 2} + \omega^{\omega + 1 + 2} + \omega^2$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>ω^3</td>
<td>ω^3</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>$\omega^4 + 3$</td>
<td>$\omega^{\omega^4 + 3} + \omega^{\omega^4 + 2} + \omega^{\omega^4 + 1} + \omega^{\omega^4}$</td>
</tr>
<tr>
<td>$\omega + 2$</td>
<td>ω^ω</td>
<td>$\omega^{\omega\omega}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega + 1$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega + 2$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>ω^3</td>
<td>$\omega^{\omega^3 + 2 + 2}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega^4 + 3$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega^4 + 3$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega^4 + 3$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega^4 + 3$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
<tr>
<td>$\omega^3 + 2 + 2$</td>
<td>$\omega^4 + 3$</td>
<td>$\omega^{\omega^3 + 2 + 2} + \omega^{\omega^3 + 2 + 1} + \omega^{\omega^3_2}$</td>
</tr>
</tbody>
</table>

Table 25: Ordinal exponential examples
• $\Delta_\alpha'(\varphi) = \Delta_0(\varphi^\alpha(-,0))$. That is it enumerates the fixed points of the diagonalization of the Veblen hierarchy constructed from φ^α.

• $\Delta_\alpha(\varphi)$ for α a limit ordinal enumerates $\bigcap_{\gamma<\alpha} \text{range } \Delta_\gamma(\varphi)$.

• $\varphi^\alpha_0 = \varphi$.

• $\varphi^\alpha_{\beta'} = \Delta_\alpha(\varphi^\alpha_{\beta})$.

• φ^α_{β} for β a limit ordinal enumerates $\bigcap_{\gamma<\beta} \text{range } \varphi^\alpha_{\gamma}$.

The function that enumerates the fixed points of a base function is a function on functions. The Veblen hierarchy is constructed by iterating this function on functions starting with ω^x. A generalized Veblen hierarchy is constructed by a similar iteration starting with any function on the countable ordinals, $f(x)$, that is strictly increasing and continuous (see Note 48) with $f(0) > 0$. The Δ operator defines a higher level function. Starting with the function on functions used to define a general Veblen hierarchy, it defines a hierarchy of functions on functions. The Δ operator constructs a higher level function that builds and then diagonalizing a Veblen hierarchy.

In a computational approach, such functions can only be partially defined on objects in an always expandable computational framework. The classes in which the functions are defined and the functions themselves are designed to be extensible as future subclasses are added to the system.

7.2 A finite function hierarchy

An obvious extension called the Veblen function is to iterate the functional hierarchy any finite number of times. This can be represented as a function on ordinal notations,

$$\varphi(\beta_1, \beta_2, \ldots, \beta_n).$$ \hspace{1cm} (20)

Each of the parameters is an ordinal notation and the function evaluates to an ordinal notation. The first parameter is the most significant. It represents the iteration of the highest level function. Each successive ordinal operand specifies the level of iteration of the next lowest level function. With a single parameter Equation 20 is the function ω^x ($\varphi(\alpha) = \omega^\alpha$).

With two parameters, $\varphi(\alpha, \beta)$, it is the Veblen hierarchy constructed from the base function ω^x. With three parameters we have the Δ hierarchy built on this initial Veblen hierarchy.

In particular the following holds.

$$\varphi(\alpha, \beta, x) = \Delta_\alpha \varphi^\alpha_{\beta}(x)$$ \hspace{1cm} (21)

\text{footnote}{49} All references to ordinals in the context of describing the computational approach refer to ordinal notations. The word notation will sometimes be omitted when it is obviously meant and would be tedious to keep repeating.

67
7.3 The finite function normal form

The Veblen function and its extension to a function with an arbitrary finite number of parameters requires the following extension to the Cantor Normal Form in Equation 17:

\[\alpha = \alpha_1 n_1 + \alpha_2 n_2 + \alpha_3 n_3 + \ldots + \alpha_k n_k \]

\[\alpha_i = \varphi(\beta_{1,i}, \beta_{2,i}, \ldots, \beta_{m_i,i}) \]

\[k \geq 1, k \geq i \geq 1, m_i \geq 1, n_k \geq 1, \alpha_1 > \alpha_2 > \alpha_3 > \ldots > \alpha_k \]

\(\alpha_i \) and \(\beta_{i,j} \) are ordinals; \(i, j, k, m_i, n_k \) are integers.

Note that \(\varphi(\beta) = \omega^\beta \) so the above includes the Cantor normal form terms. To obtain a unique representation for each ordinal the rule is adopted that all normal forms must be reduced to the simplest expression that represents the same ordinal. For example \(\varphi(1, 0) = \varepsilon_0 = \omega^{\varepsilon_0} = \varphi(\varphi(1, 0)) \). This requires that fixed points be detected and reduced as described in 8.3.

In this computational approach, the meaning of ordinal notations is defined by functions \texttt{compare} and \texttt{limitElement}. What \texttt{compare} must do is defined by \texttt{limitElement} which defines each notation in terms of notations for smaller ordinals.

7.4 limitElement for finite functions

The \texttt{LimitElement} member function for an ordinal notation \texttt{ord} defines \texttt{ord} by enumerating notations for smaller ordinals such that the union of the ordinals those notations represent is the ordinal represented by \texttt{ord}. As with base class \texttt{Ordinal} all but the least significant term is copied unchanged to each output of \texttt{limitElement}. Table 19 for \texttt{Ordinal::limitElement} specifies how terms, excluding the least significant and the factors (the \(n_i \) in Equation 17), are handled. The treatment of these excluded terms does not change for the extended normal form in Equation 22 and is handled by base class routines. Table 26 extends Table 19 by specifying how the least significant normal form term (if it is \(\geq \varepsilon_0 \)) is handled in constructing \texttt{limitElement}(i). If the factor of this term is greater than 1 or there are other terms in the ordinal notation then the algorithms from Table 19 must also be used in computing the final output.

Table 26 uses pseudo C++ code adapted from the implementation of \texttt{limitElement}. Variable names have been shortened to limit the size of the table and other simplifications have been made. However the code accurately describes the logic of the program. Variable \texttt{ret} is the result or output of the subroutine. Different sequences are generated based on the two least significant non zero parameters of \(\varphi \) in Equation 20 and whether the least significant non zero term is the least significant term (including those that are zero). The idea is to construct an infinite sequence with a limit that is not reachable with a finite sequence of smaller notations.
\[\alpha = \varphi(\beta_1, \beta_2, \ldots, \beta_m) \text{ from Equation 22.} \]

\(lp1, \ rep1 \text{ and } rep2 \) abbreviate \(\limPlus 1 \text{ replace}1 \text{ and } replace2. \)

Conditions on the least significant non-zero parameters, \(leastOrd \) (index \(least \)) and \(nxtOrd \) (index \(nxt \))

Routines \(rep1 \text{ and } rep2 \) replace 1 or 2 parameters in Equation 22. The index and value to replace (one or two instances) are the parameters to these routines. \(lp1() \) avoids fixed points by adding one to an ordinal with \(\text{pseudoCodeLevel} > \text{cantorCodeLevel} \) (see Section 8.3 on fixed points). \(ret \) is the result returned.

<table>
<thead>
<tr>
<th>X</th>
<th>nxtOrd</th>
<th>leastOrd</th>
<th>ret=α.limElement(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>ignore</td>
<td>successor(^2)</td>
<td>(\text{ret}=\text{rep2}(\text{least}, \text{leastOrd}-1, \text{least}+1,1);) (\text{for (int } j=1; \ j<i; \ j++ \text{)}) (\text{ret}=\text{rep2}(\text{least}, \text{leastOrd}-1, \text{least}+1, \text{ret}.lp1());)</td>
</tr>
<tr>
<td>FD</td>
<td>successor</td>
<td>successor(^3)</td>
<td>(\text{ret}=\text{rep1}(\text{least}, \text{leastOrd}-1).lp1();) (\text{for (int } j=1; \ j<i; \ j++ \text{)}) (\text{ret}=\text{rep2}(\text{nxt}, \text{nxtOrd}-1, \text{nxt}+1, \text{ret}.lp1());)</td>
</tr>
<tr>
<td>FL</td>
<td>ignore</td>
<td>limit(^1)</td>
<td>(\text{ret}=\text{rep1}(\text{least}, \text{leastOrd}().\limElement(i)).lp1();)</td>
</tr>
<tr>
<td>FN</td>
<td>limit</td>
<td>successor(^3)</td>
<td>(\text{tmp}=\text{rep1}(\text{least}, \text{leastOrd}-1).lp1();) (\text{ret}=\text{rep2}(\text{nxt}, \text{nxtOrd}().\limElement(i)).lp1(), \text{nxt}+1, \text{tmp};)</td>
</tr>
</tbody>
</table>

The ‘\(X \)’ column gives the exit code from \(\text{limElement} \) (see Section 8.2).

1 least significant non zero parameter may or may not be least significant.
2 least significant non zero parameter is not least significant.
3 least significant non zero parameter is least significant.

Table 26: Cases for computing \(\varphi(\beta_1, \beta_2, \ldots, \beta_m).\text{limElement}(i) \)
7.5 An iterative functional hierarchy

A finite functional hierarchy with an arbitrarily large number of parameters can be expanded
with a limit that is a sequence of finite functionals with an ever increasing number of param-
eters. Using this as the successor operation and taking the union of all hierarchies defined
by a limit ordinal allows iteration of a functional hierarchy up to any recursive ordinal. The
key to defining this iteration is the \texttt{limitElement} member function.

To support this expanded notation the normal form in Equation 22 is expanded as follows.

\[
\alpha = \alpha_1 n_1 + \alpha_2 n_2 + \alpha_3 n_3 + \ldots + \alpha_k n_k
\]

\[
\alpha_i = \varphi_{\gamma_i}(\beta_1, i, \beta_2, i, \ldots, \beta_m, i)
\]

\[k \geq 1, k \geq i \geq 1, m_i \geq 1, n_k \geq 1, \alpha_1 > \alpha_2 > \alpha_3 > \ldots > \alpha_k\]

\(\alpha_i\) and \(\beta_{i,j}\) are ordinals; \(i, j, k, m_i, n_k\) are integers.

\(\gamma_i\), the subscript to \(\varphi\), is the ordinal the functional hierarchy is iterated up to. \(\varphi_0(\beta_1, \beta_2, \ldots, \beta_m) = \varphi(\beta_1, \beta_2, \ldots, \beta_n)\). \(\varphi(0) = \varphi_1\) is the notation for an infinite union of the ordinals represented
by finite functionals. Specifically it represents the union of ordinals with notations:
\(\varphi(1), \varphi(1, 0), \varphi(1, 0, 0), \ldots, \varphi(1) = \omega, \varphi(1, 0) = \varepsilon_0\) and \(\varphi(1, 0, 0) = \Gamma_0\). \(\varphi_0(\alpha) = \varphi(\alpha) = \omega^\alpha\)
and \(\varphi_{\gamma+1} = \varphi_{\gamma}(1) \cup \varphi_{\gamma}(1, 0) \cup \varphi_{\gamma}(1, 0, 0), \ldots\).

The definition of \texttt{limitElement} for this hierarchy is shown in Table 36. This is an
extension of Table 26. That table and the definition of \texttt{compare} (See Section 9.1) define
the notations represented by Equation 23. The subclass \texttt{FiniteFuncOrdinal} (Section 8)
defines finite functional notations for recursive ordinals. The subclass \texttt{IterFuncOrdinal}
(Section 9) defines iterative functional notations for recursive ordinals.

8 \texttt{FiniteFuncOrdinal class}

\texttt{FiniteFuncOrdinal class} is derived from \texttt{Ordinal} base class. It implements ordinal
notations for the normal form in Equation 22. Each term or \(\alpha_i n_i\) is defined by an
instance of \texttt{class FiniteFuncNormalElement} or \texttt{CantorNormalElement}. Any term that is a
\texttt{FiniteFuncNormalElement} will have member \texttt{codeLevel} set to \texttt{finiteFuncCodeLevel}.

The \texttt{FiniteFuncOrdinal class} should not be used directly to create ordinal notations.
Instead use functions \texttt{psi} or \texttt{finiteFunctional}\footnote{In the interactive ordinal calculator the \texttt{psi} function can be use with any number of parameters to define a \texttt{FiniteFuncOrdinal}. See Section B.11.5 for some examples.}. \texttt{psi} constructs notations for the initial Veblen hierarchy. It requires exactly two parameters (for the single parameter case use \(\varphi(\alpha) = \omega^\alpha\)). \texttt{finiteFunctional} accepts 3 to 5 parameters. For more than 5 use a
NULL terminated array of pointers to \texttt{Ordinals} or \texttt{createParameters} to create this array.
\texttt{createParameters} can have 1 to 9 parameters all of which must be pointers to \texttt{Ordinals}.

Some examples are show in Table 28. The direct use of the \texttt{FiniteFuncOrdinal constructor} is shown in Table 29. The ‘\texttt{Ordinal}’ column of both tables is created using \texttt{Ordinal::
texNormalForm} which uses the standard notation for \(\varepsilon_\alpha\) and \(\Gamma_\alpha\) where appropriate. These
functions reduce fixed points to their simplest expression and declare an **Ordinal** instead of a **FiniteFuncOrdinal** if appropriate. The first line of Table 28 is an example of this.

FiniteFuncOrdinal can be called with 3 or 4 parameters. For additional parameters, it can be called with a NULL terminated array of pointers to **Ordinal** notations. **createParameters** can be used to create this array as shown in the last line of Table 2851.

8.1 compare member function

Because of virtual functions, there is no need for **FiniteFuncOrdinal::compare**. The work of comparing the sequence of terms in Equation 22 is done by **Ordinal::compare** and routines it calls. **FiniteFuncNormalElement::compare** is automatically called for comparing individual terms in the normal form from Equation 22. It overrides **CantorNormalElement::compare**. It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argument term. The $\beta_{j,i}$ in Equation 22 are represented by the elements of array **funcParameters** in C++.

The **FiniteFuncNormalElement** object **compare** (or any class member function) is called from is ‘**this**' in C++. The **CantorNormalElement** argument to **compare** is **trm**. If **trm.codeLevel** > **finiteFuncCodeLevel**52 then -**trm.compare(**this**) is returned. This invokes the subclass member function associated with the subclass and **codeLevel** of **trm**.

CantorNormalElement::compare only needs to test the **exponents** and if those are equal the **factors** of the two normal form terms being compared. An arbitrarily large number of **Ordinal** parameters are used to construct a **FiniteFuncNormalElement**. Thus a series of tests is required. This is facilitated by a member function **CantorNormalElement::getMaxParameter** that returns the largest parameter used in constructing this normal form term53. If **trm.codeLevel** < **finiteFuncCodeLevel** then **trm > this** only if the maximum parameter of **trm** is greater than **this**. However the value of **factor** for **this** must be ignored in making this comparison because **trm ≥ ω^{trm getMaxParameter()}** and this will swamp the effect of any finite **factor**.

The following describes **FiniteFuncNormalElement::compare** with a single **CantorNormalElement** parameter **trm**.

1. If **trm.codeLevel** < **finiteFuncCodeLevel** the first (and thus largest) term of the exponent of the argument is compared to **this**, ignoring the two factors. If the result is nonzero that result is returned. Otherwise -1 is returned.

2. If the first term of the maximum parameter of the ordinal notation **compare** is called from **is**, ignoring factors, \geq **trm**, return 1.

3. If **this ≤** the maximum parameter of **trm** return -1.

51The ‘&’ character in the last line in Table 28 is the C++ syntax that constructs a pointer to the object ‘&’ precedes.

52 **finiteFuncCodeLevel** is the **codeLevel**(see Section 6.4.2) of a **FiniteFuncNormalElement**.

53For efficiency the constructor of a **FiniteFuncNormalElement** finds and saves the maximum parameter. For a **CantorNormalElement** the maximum parameter is the **exponent** as this is the only parameter that can be infinite. The case when the **factor** is larger than the **exponent** can be safely ignored.
<table>
<thead>
<tr>
<th>Ordinal Calculator code</th>
<th>Ordinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w^w)</td>
<td>ω^ω</td>
</tr>
<tr>
<td>epsilon(0)</td>
<td>ε_0</td>
</tr>
<tr>
<td>epsilon(1)</td>
<td>ε_1</td>
</tr>
<tr>
<td>psi(epsilon(0), 1)</td>
<td>$\varphi(\varepsilon_0, 1)$</td>
</tr>
<tr>
<td>epsilon(2)</td>
<td>ε_2</td>
</tr>
<tr>
<td>gamma(0)</td>
<td>Γ_0</td>
</tr>
<tr>
<td>gamma(1)</td>
<td>Γ_1</td>
</tr>
<tr>
<td>gamma(2)</td>
<td>Γ_2</td>
</tr>
<tr>
<td>psi(1, 2, 0)</td>
<td>$\varphi(1, 2, 0)$</td>
</tr>
<tr>
<td>gamma(w)</td>
<td>Γ_w</td>
</tr>
<tr>
<td>psi(1, epsilon(0), w)</td>
<td>$\varphi(1, \varepsilon_0, \omega)$</td>
</tr>
<tr>
<td>psi(1, 0, 0, 0)</td>
<td>$\varphi(1, 0, 0, 0)$</td>
</tr>
<tr>
<td>psi(2, 0, 0)</td>
<td>$\varphi(2, 0, 0)$</td>
</tr>
<tr>
<td>psi(3, 0, 0)</td>
<td>$\varphi(3, 0, 0)$</td>
</tr>
<tr>
<td>psi(w, 1, 0)</td>
<td>$\varphi(\omega, 1, 0)$</td>
</tr>
<tr>
<td>psi(1, 0, 0, 0)</td>
<td>$\varphi(1, 0, 0, 0)$</td>
</tr>
<tr>
<td>psi(w + 4, 0, 0)</td>
<td>$\varphi(\omega + 4, 0, 0)$</td>
</tr>
<tr>
<td>psi(4, 12)</td>
<td>$\varphi(4, 12)$</td>
</tr>
<tr>
<td>psi(3, (w^2) + 2)</td>
<td>$\varphi(3, \omega^2 + 2)$</td>
</tr>
<tr>
<td>psi(1, 1, 1)</td>
<td>$\varphi(1, 1, 1)$</td>
</tr>
<tr>
<td>psi(w, 1, 1)</td>
<td>$\varphi(\omega, 1, 1)$</td>
</tr>
<tr>
<td>psi(2, 0, 2, 1)</td>
<td>$\varphi(2, 0, 2, 1)$</td>
</tr>
<tr>
<td>psi(w, 0)</td>
<td>$\varphi(\omega, 0)$</td>
</tr>
<tr>
<td>psi(w, w)</td>
<td>$\varphi(\omega, \omega)$</td>
</tr>
<tr>
<td>psi((w^w), 0, 0)</td>
<td>$\varphi(\omega^\omega, 0, 0)$</td>
</tr>
<tr>
<td>psi(w, 0, 0)</td>
<td>$\varphi(\omega, 0, 0)$</td>
</tr>
<tr>
<td>psi(w, 0, 0, 0)</td>
<td>$\varphi(\omega, 0, 0)$</td>
</tr>
<tr>
<td>psi(2, psi(2, 0), epsilon(0))</td>
<td>$\varphi(2, \varphi(2, 0), \varepsilon_0)$</td>
</tr>
<tr>
<td>psi(3, psi(2, 0), epsilon(0))</td>
<td>$\varphi(3, \varphi(2, 0), \varepsilon_0)$</td>
</tr>
<tr>
<td>psi(3, psi(2, 0, 0, 0), w)</td>
<td>$\varphi(3, \varphi(2, 0, 0, 0), \omega)$</td>
</tr>
<tr>
<td>psi(3, psi(2, 0, 0, 0), epsilon(0))</td>
<td>$\varphi(3, \varphi(2, 0, 0, 0), \varepsilon_0)$</td>
</tr>
<tr>
<td>psi(3, psi(2, 0, 0, 0), epsilon(1))</td>
<td>$\varphi(3, \varphi(2, 0, 0, 1), \varepsilon_1)$</td>
</tr>
<tr>
<td>psi(psi(2, 0), gamma(0), epsilon(0))</td>
<td>$\varphi(\varphi(2, 0), \Gamma_0, \varepsilon_0)$</td>
</tr>
<tr>
<td>psi(w, 1)</td>
<td>$\varphi(\omega, 1)$</td>
</tr>
<tr>
<td>psi(w, 5)</td>
<td>$\varphi(\omega, 5)$</td>
</tr>
<tr>
<td>psi(w, 0, 1)</td>
<td>$\varphi(\omega, 0, 1)$</td>
</tr>
</tbody>
</table>

Table 27: finiteFunctional code examples
<table>
<thead>
<tr>
<th>C++ code</th>
<th>Ordinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi(zero,omega)</td>
<td>ω^ω</td>
</tr>
<tr>
<td>psi(one,zero)</td>
<td>ε_0</td>
</tr>
<tr>
<td>psi(one,one)</td>
<td>ε_1</td>
</tr>
<tr>
<td>psi(eps0,one)</td>
<td>$\varphi(\varepsilon_0, 1)$</td>
</tr>
<tr>
<td>psi(one,Ordinal::two)</td>
<td>ε_2</td>
</tr>
<tr>
<td>finiteFunctional(one,zero,zero)</td>
<td>Γ_0</td>
</tr>
<tr>
<td>finiteFunctional(one,zero,one)</td>
<td>Γ_1</td>
</tr>
<tr>
<td>finiteFunctional(one,zero,Ordinal::two)</td>
<td>Γ_2</td>
</tr>
<tr>
<td>finiteFunctional(one,Ordinal::two,zero)</td>
<td>$\varphi(1, 2, 0)$</td>
</tr>
<tr>
<td>finiteFunctional(one,zero,omega)</td>
<td>Γ_ω</td>
</tr>
<tr>
<td>finiteFunctional(one,eps0,omega)</td>
<td>$\varphi(1, \varepsilon_0, \omega)$</td>
</tr>
<tr>
<td>finiteFunctional(one,zero,zero,zero)</td>
<td>$\varphi(1, 0, 0, 0)$</td>
</tr>
<tr>
<td>finiteFunctional(createParameters(&one,&zero,&zero,&zero,&zero))</td>
<td>$\varphi(1, 0, 0, 0, 0)$</td>
</tr>
</tbody>
</table>

Table 28: finiteFunctional C++ code examples

<table>
<thead>
<tr>
<th>C++ code</th>
<th>Ordinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>const Ordinal * const params[] =</td>
<td></td>
</tr>
<tr>
<td>{&Ordinal::one,&Ordinal::zero,0};</td>
<td></td>
</tr>
<tr>
<td>const FiniteFuncOrdinal eps0(params);</td>
<td>ε_0</td>
</tr>
<tr>
<td>Ordinal eps0_alt = psi(1,0);</td>
<td>ε_0</td>
</tr>
<tr>
<td>const FiniteFuncOrdinal eps0_alt2(1,0);</td>
<td>ε_0</td>
</tr>
<tr>
<td>const FiniteFuncOrdinal gamma0(1,0,0);</td>
<td>Γ_0</td>
</tr>
<tr>
<td>const FiniteFuncOrdinal gammaOmega(omega,0,0);</td>
<td>$\varphi(\omega, 0, 0)$</td>
</tr>
<tr>
<td>const FiniteFuncOrdinal gammmax(gammaOmega,omega,omega);</td>
<td>$\varphi(\varphi(\omega, 0, 0), \Gamma_0, \omega)$</td>
</tr>
<tr>
<td>const FiniteFuncOrdinal big(1,0,0,0);</td>
<td>$\varphi(1, 0, 0, 0)$</td>
</tr>
</tbody>
</table>

Table 29: FiniteFuncOrdinal C++ code examples
If the above is not decisive \texttt{FiniteFuncNormalElement::compareFiniteParams} is called to compare in sequence the number of parameters and then the size of each parameter in succession starting with the most significant. If any difference is encountered that is returned as the result otherwise the result depends on the relative size of the two factors.

8.2 limitElement member function

As with \texttt{compare} there is no need for \texttt{FiniteFuncOrdinal::limitElement}. The \texttt{Ordinal} member function is adequate. \texttt{FiniteFuncNormalElement::limitElement} overrides \texttt{CantorNormalElement::limitElement} described in Section 6.3. Thus it takes a single integer parameter. Increasing values for this argument yield larger ordinal notations as output. The union of the ordinals represented by the outputs for all integer inputs is equal to the ordinal represented by the \texttt{FiniteFuncNormalElement} class instance \texttt{limitElement} is called from. This will be referred to as the input term to \texttt{limitElement}.

\texttt{Ordinal::limitElement} copies all but the last term of the normal form of its input to the output it generates. For both \texttt{Ordinals} and \texttt{FiniteFuncOrdinals} this is actually done in \texttt{OrdinalImpl::limitElement} \footnote{\texttt{OrdinalImpl} is an internal implementation \texttt{class} that does most of the work for instances of an \texttt{Ordinal}.} The last term of the result is determined by a number of conditions on the last term of the input in \texttt{FiniteFuncNormalElement::limitElement}.

Tables 19 and 26 fully define \texttt{FiniteFuncOrdinal::limitElement}. The 'X' column in Table 26 connect each table entry to the section of code preceding \texttt{RETURN1}. This is a debugging macro which has a quoted letter as a parameter. This letter is an exit code that matches the X column in Table 26. The C++ pseudo code in the table uses shorter variable names and takes other shortcuts, but accurately reflects the logic in the source code.
Symbols used in this table and Table 34

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lp1</td>
<td>limPlus_1 add a to a possible fixed point</td>
</tr>
<tr>
<td>le</td>
<td>limitElement</td>
</tr>
<tr>
<td>lNz</td>
<td>leastNonZero index of least significant nonzero β_i</td>
</tr>
<tr>
<td>nlNz</td>
<td>nextLeastNonZero index of next to the least significant nonzero β_i</td>
</tr>
<tr>
<td>rep1</td>
<td>replace1 replace 1 β_i parameter at specified index with specified value</td>
</tr>
<tr>
<td>rep2</td>
<td>replace2 replace 2 β_i parameters at specified indices with specified values</td>
</tr>
<tr>
<td>Rtn</td>
<td>return what is returned from code fragment</td>
</tr>
</tbody>
</table>

limitElement does all its work in limitElementCom or lower level routines. It has exit code AA when it calls CantorNormalElement(n) and exit code AB when it calls limitElementCom. See Section 7.4 for a description of exit codes in the X column.

α is from Expression 20, $\alpha = \varphi(\beta_1, \beta_2, ..., \beta_n)$.

<table>
<thead>
<tr>
<th>X</th>
<th>LimitTypeInfo</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>paramSuccZero</td>
<td>b=rp2(lNz, β_{lNz}-1, lNz+1, 1); for (i=1; i<n; i++) b=rp2(lNz, β_{lNz}-1, lNz+1, b); Rtn b</td>
</tr>
<tr>
<td>FD</td>
<td>paramsSucc</td>
<td>b=rep1(sz-1, β_{sz}-1 - 1); for (i=1; i<n; i++) b=rep2(nlNz, β_{nlNz}-1, nlNz+1, b.lp1); Rtn b</td>
</tr>
<tr>
<td>FL</td>
<td>paramLimit</td>
<td>rep1(lNz, β_{lNz}, le(n))</td>
</tr>
<tr>
<td>FN</td>
<td>paramNxtLimit</td>
<td>b=rep1(sz-1, β_{sz}-1-1); rep2(nlNz, β_{nlNz}, le(n), nlNz+1, b.lp1)</td>
</tr>
</tbody>
</table>

See Table 31 for examples

Table 30: FiniteFuncNormalElement::limitElementCom cases
Table 31: FinitefuncNormalElement::limitElementCom exit codes
8.3 fixedPoint member function

FiniteFuncOrdinal::fixedPoint is used by finiteFunction to create an instance of FiniteFuncOrdinal in a normal form (Equation 22) that is the simplest expression for the ordinal represented. The routine has an index and an array of pointers to Ordinal notations as input. This array of notations contains the parameters for the notation being constructed. This function determines if the parameter at the specified index is a fixed point for a FiniteFuncOrdinal created with these parameters. If it is, true is returned and otherwise false. The routine that calls this routine selects the largest parameter in the array of Ordinal pointers as the one to check (the value of the index parameter). It then checks to see if all less significant parameters are 0. If not this cannot be a fixed point. fixedPoint is only called if this condition is met.

Section 6.4.1 defines the codeLevel assigned to a CantorNormalElement. From this a pseudoCodeLevel for an Ordinal is obtained by calling Ordinal member function with that name. pseudoCodeLevel returns cantorCodeLevel unless the ordinal notation normal form has a single term or CantorNormalElement with a factor of 1. In that case the codeLevel of that term is returned. This is helpful in evaluating fixed points because a parameter with a pseudoCodeLevel at cantorCodeLevel cannot be a fixed point.

If the parameter selected has pseudoCodeLevel ≤ cantorCodeLevel, false is returned. If the maximum parameter pseudoCodeLevel > finiteFuncCodeLevel, true is returned. Otherwise a FiniteFuncOrdinal is constructed from all the parameters except that selected by the index which is set to zero. If this value is less than the maximum parameter, true is returned and otherwise false.

8.4 operators

FiniteFuncOrdinal operators are extensions of the Ordinal operators defined in Section 6.4. No new code is required for addition.

8.4.1 multiplication

The code that combines the terms of a product for class Ordinal can be used without change for FiniteFuncOrdinal. The only routines that need to be overridden are those that take the product of two terms, i.e. two CantorNormalElements with at least one of these also being a FiniteFuncNormalElement. The two routines overridden are multiply and multiplyBy. Overriding these insures that, if either operand is a FiniteFuncNormalElement subclass of CantorNormalElement, the higher level virtual function will be called.

The key to multiplying two terms of the normal form representation, at least one of which is at finiteFuncCodeLevel, is the observation that every normal form term at finiteFuncCodeLevel with a factor of 1 is a fixed point of ω^x, i.e. $a = \omega^a$. Thus the product of two such terms, a and b is ω^{a+b}. Further the product of term a at this level and $b = \omega^b$ for any term b at cantorCodeLevel is ω^{a+b}. Note in all cases if the first term

55If there is only one nonzero parameter (which must be the most significant), then the parameter array is increased by 1 and the most significant parameter is set to one in the value to compare with the maximum parameter.
has a factor other than 1 it will be ignored. The second term’s factor will be applied to the result.

Multiply is mostly implemented in `FiniteFuncNormalElement::doMultiply` which is a static function\(^{56}\) that takes both multiply arguments as operands. This routine is called by both `multiply` and `multiplyBy`. It first checks to insure that neither argument exceeds `finiteFuncCodeLevel` and that at least one argument is at `finiteFuncCodeLevel`. The two arguments are called `op1` and `op2`.

Following are the steps taken in `FiniteFuncNormalElement::doMultiply`. `s1` and `s2` are temporary variables.

1. If `op1` is finite return a copy of `op2` with its factor multiplied by `op1` and return that value.
2. If `op1` is at `cantorCodeLevel` assign to `s1` the exponent of `op1` otherwise assign to `s1` a copy of `op1` with factor set to 1.
3. If `op2` is at `cantorCodeLevel` assign to `s2` the exponent of `op2` otherwise assign to `s2` a copy of `op2` with factor set to 1.
4. Add `s1` and `s2` to create `newExp`.
5. If `newExp` has a single term and the `codeLevel` of that term is \geq `finiteFuncCodeLevel` and the factor of that term is 1 then return the value of the single term of `newExp`.
6. Create and return a `CantorNormalElement` with exponent equal to `newExp` and factor equal to the factor or `op2`.

Some examples are shown in Table 32.

\(^{56}\)A C++ static function is a member function of a class that is not associated with a particular instance of that class.
<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>$\alpha \times \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega(\varepsilon_0 + 2) + (\varepsilon_0 + 2) + 2$</td>
</tr>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\omega(\varepsilon_0 + 2) + (\varepsilon_0 + 2) + 2$</td>
</tr>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varphi(\omega, \omega + 3)$</td>
<td>$\varphi(\omega, \omega + 3)$</td>
</tr>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega(\varepsilon_0 + 2)$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega, \omega + 3))$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega, \omega + 3))$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega, \omega + 3))$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\omega(\varepsilon_0 + 2)$</td>
<td>$\omega(\varepsilon_0 + 2)$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\varphi(\omega, \omega + 3)$</td>
<td>$\varphi(\omega, \omega + 3)$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\omega(\varepsilon_0 + 2)$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\varphi(\omega, \omega + 3)$</td>
<td>$\varphi(\omega, \omega + 3)$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega, \omega + 3))$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega, \omega + 3))$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0 + 2$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega, \omega + 3))$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega, \omega + 3))$</td>
</tr>
</tbody>
</table>

Table 32: FiniteFuncOrdinal multiply examples
8.4.2 exponentiation

Exponentiation has a structure similar to multiplication. The only routines that need to be overridden involve \(a^b \) when both \(a \) and \(b \) are single terms in a normal form expansion. The routines overridden are \texttt{toPower} and \texttt{powerOf}. Most of the work is done by \texttt{static} member function \texttt{FiniteFuncNormalElement::doToPower} which takes both parameters as arguments. The two routines that call this only check if both operands are at \texttt{cantorCodeLevel} and if so call the corresponding \texttt{CantorNormalElement} member function.

The key to the algorithm is again the observation that every normal form term at \texttt{finiteFuncCodeLevel} with a \texttt{factor} of 1 is a fixed point of \(\omega^x \), i.e. \(a = \omega^a \). The value of \texttt{factor} can be ignored in the base part of an exponential expression where the exponent is a limit ordinal. All infinite normal form terms are limit ordinals. Thus \(a^b \) where both \(a \) and \(b \) are at \texttt{finiteFuncCodeLevel} and \(b \leq a \) is \(\omega^{ab} \) or equivalently \(\omega^{\omega^a + b} \) which is the normal form result. If the base, \(a \), of the exponential is at \texttt{cantorCodeLevel} then \(a = \omega^a \) and the result is \(\omega^{ab} \).

Following is a more detailed summary of \texttt{FiniteFuncNormalElement::doToPower}. This summary describes how \texttt{base}^{\texttt{expon}} is computed.

- If \((\texttt{base} < \texttt{expon}) \land (\texttt{expon.factor} = 1) \land (\texttt{expon.expTerm()} == \texttt{true})\) then \(\texttt{expon} \) is returned.
- \texttt{p1 = base.codeLevel \geq \texttt{finiteFuncCodeLevel} \ ? base : base.exponent}58
- \texttt{newExp = p1 \times \texttt{expon}}
- If \texttt{newExp} has a single term with a \texttt{factor} of 1 and the \texttt{codeLevel} of that term is \(\geq \texttt{finiteFuncCodeLevel} \) then return \texttt{newExp} because it is a fixed point of \(\omega^x \).
- Otherwise return \(\omega^{\texttt{newExp}} \).

57\texttt{CantorNormalElement::expTerm} returns \texttt{true} iff the term it is called from is at \texttt{cantorCodeLevel}, has a \texttt{factor} or 1, has an \texttt{exponent} with a single term and such that \texttt{exponent.expTerm()} returns \texttt{true}.

58In C++ ‘boolean expression ? optionTrue : optionFalse’ evaluates to ‘optionTrue’ if ‘boolean expression’ is true and ‘optionFalse’ otherwise
<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>α^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + (\varepsilon_0^2)} + \omega^{(\omega^2) + \varepsilon_0^2} + \varepsilon_0^2 + \omega^{(\varepsilon_0^2)}$</td>
</tr>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\omega^{(\varepsilon_0^2) + (\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varphi(\omega^{(\varepsilon_0^2) + (\omega^2) + 3})$</td>
</tr>
<tr>
<td>$\varepsilon_0 + 2$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_0 + 2$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\varepsilon_1 + \varepsilon_0$</td>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
</tr>
<tr>
<td>$\varphi(\omega^\varepsilon, \omega + 3)$</td>
<td>$\omega^{(\omega^2) + 3}$</td>
<td>$\varphi(3, \varepsilon_0, \varphi(\omega^\varepsilon, \omega + 3))$</td>
</tr>
</tbody>
</table>

Table 33: FiniteFuncOrdinal exponential examples
See Table 30 for symbols used here.

\[\alpha \text{ is from Expression 20, } \alpha = \varphi(\beta_1, \beta_2, ..., \beta_n). \]

<table>
<thead>
<tr>
<th>X</th>
<th>LimitTypeInfo</th>
<th>(\alpha \leq n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFA</td>
<td>paramNxtLimit</td>
<td>(b = \text{rep1(sz-1, } \beta_{sz-1} - 1)); Rtn</td>
</tr>
<tr>
<td>OFB</td>
<td>paramLimit</td>
<td>(\text{rep2(n1Nz, } \beta_{n1Nz} . \leq(n), n1Nz+1, b.1p1))</td>
</tr>
</tbody>
</table>

See Table TO BE ADDED for examples

Table 34: FiniteFuncNormalElement::limitOrdCom

8.5 limitOrd member function

limitOrd is analogous to limitElement but it supports ordinals \(\geq \omega_1^{CK} \), the ordinal of the recursive ordinals. We have do not have notations for such ordinals at the code level discusses up to this point. This routine will only be used in conjunction with notations defined in later sections. limitOrdCom is a subroutine called by limitOrd to do most of the work and structured in such a way that it can be used by notations at higher code level. It creates virtual objects that can automatically fill in parameters from higher level objects that call limitOrdCom.

9 IterFuncOrdinal class

C++ class IterFuncOrdinal is derived from class FiniteFuncOrdinal which in turn is derived from class Ordinal. It implements the iterative functional hierarchy described in Section 7.5. It uses the normal form in Equation 23. Each term of that normal form, each \(\alpha_i n_i \), is represented by an instance of class IterFuncNormalElement or one of the classes this class is derived from. These are FiniteFuncNormalElement and CantorNormalElement. Terms that are IterFuncNormalElements have a codeLevel of iterFuncCodeLevel.

The IterFuncOrdinal class should not be used directly to create ordinal notations. Instead use function iterativeFunctional\(^{59}\). This function takes two arguments. The first gives the level of iteration or the value of \(\gamma_i \) in Equation 23. The second gives a NULL terminated array of pointers to Ordinals which are the \(\beta_{i,j} \) in Equation 23. This second parameter is optional and can be created with function createParameters described in Section 8. Some examples are shown in Table 35.

iterativeFunctional creates an Ordinal or FiniteFuncOrdinal instead of an IterFuncOrdinal if appropriate. The first three lines of Table 35 are examples. It also reduces fixed points to their simplest possible expression. The last line of the table is an example.

\(^{59}\)The interactive ordinal calculator supports a TeX like syntax. To define \(\varphi(a, b, c, d) \) write \(\psi_{\{a\}}(b, c, d) \). Any number of parameters in parenthesis may be entered or the parenthesis may be omitted. See Section B.11.6 for examples.
'cp' stands for function createParameters

<table>
<thead>
<tr>
<th>C++ code</th>
<th>Ordinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterativeFunctional(zero,cp(&one))</td>
<td>ω</td>
</tr>
<tr>
<td>iterativeFunctional(zero,cp(&one,&zero))</td>
<td>ε₀</td>
</tr>
<tr>
<td>iterativeFunctional(zero,cp(&one,&one,&zero))</td>
<td>ϕ(1,1,0)</td>
</tr>
<tr>
<td>iterativeFunctional(one)</td>
<td>ϕ₁</td>
</tr>
<tr>
<td>iterativeFunctional(one,cp(&one))</td>
<td>ϕ₁(1)</td>
</tr>
<tr>
<td>iterativeFunctional(one,cp(&one,&omega))</td>
<td>ϕ₁(1,ω)</td>
</tr>
<tr>
<td>iterativeFunctional(one,cp(&one,&omega,&zero))</td>
<td>ϕ₁(1,ω,0,0)</td>
</tr>
<tr>
<td>iterativeFunctional(one,cp(&one,&omega,&zero,&zero))</td>
<td>ϕ₁(1,ω,0,0)</td>
</tr>
<tr>
<td>iterativeFunctional(omega,cp(&one,&omega,&zero,&zero))</td>
<td>ϕ₁(1,ω,0,0)</td>
</tr>
<tr>
<td>iterativeFunctional(omega,cp(&iterativeFunctional(omega)))</td>
<td>ϕ₁(ω)</td>
</tr>
</tbody>
</table>

Table 35: iterativeFunctional C++ code examples

9.1 compare member function

IterFuncNormalElement::compare supports one term in the extended normal form in Equation 23. IterFuncNormalElement::compare with a single CantorNormalElement argument overrides FiniteFuncNormalElement::compare with the same argument (see Section 8.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argument term.

The IterFuncNormalElement object compare (or any class member function) is called from is this in C++. The CantorNormalElement argument to compare is trm. If trm.codeLevel > iterFuncCodeLevel then -trm.compare(*this) is returned. This invokes the subclass member function associated with the codeLevel of trm.

This compare is similar to that for class FiniteFuncOrdinal described in Section 8.1. The main difference is additional tests on γᵢ from Equation 23.

If trm.codeLevel < iterFuncCodeLevel then trm > this only if the maximum parameter of trm is greater than this. However the values of factor must be ignored in making this comparison because trm ≥ ω trm.getMaxParameter() and this will swamp the effect of any finite factor.

Following is an outline of IterFuncNormalElement::compare with a CantorNormalElement parameter trm.

1. If trm.codeLevel < iterFuncCodeLevel, this is compared with the first (largest) term of the maximum parameter of the argument (ignoring the two factors). If the result is ≤ 0, -1 is returned. Otherwise 1 is returned.

2. this is compared to the maximum parameter of the argument. If the result is less than than or equal -1 is returned.

3. The maximum parameter of this is compared against the argument trm. If the result is greater or equal 1 is returned.

4. The function level (functionLevel) (γᵢ from Equation 23) of this is compared to the functionLevel of trm. If the result is nonzero it is returned.
If no result is obtained IterFuncNormalElement::compareFiniteParams is called to compare in sequence the number of parameters of the two terms and then the size of each argument in succession starting with the most significant. If any difference is encountered that is returned as the result. If not the difference in the factors of the two terms is returned.

9.2 limitElement member function

IterFuncNormalElement::limitElement overrides CantorNormalElement::limitElement described in Section 6.3 and FiniteFuncNormalElement::limitElement described in Section 8.2 This function takes a single integer parameter. Increasing values for this argument yield larger ordinal notations as output. The union of the ordinals represented by the outputs for all integer inputs is equal to the ordinal represented by the IterFuncNormalElement class instance limitElement is called from. This will be referred to as the input to limitElement.

Ordinal::limitElement processes all but the last term of the normal form of the result by copying it unchanged from the input Ordinal. The last term of the result is determined by a number of conditions on the last term of the input. This is what IterFuncNormalElement::limitElement does.

If there are two or more β parameters in $\varphi_\gamma(\beta_1, \beta_2, ..., \beta_m).\text{limitElement}(n)$ then Table 26 describes the result with γ unchanged. Table 36 describes the cases with at most one β parameter. The processing is done by IterFuncOrdinal::limitElementCom which is called by IterFuncNormalElement::limitElementCom. The ‘Com suffix indicates that these routines can be used by higher classes just as as IterFuncNormalElement routines can call FiniteFuncNormalElement::limitElementCom. This routine creates its return value with a virtual function createVirtualOrdImpl which is overridden when it is called from a subclass object. The rep1 and rep2 of Table 26 also calls this virtual function to create a result.

60 The 'X' column in Tables 26, 36 and others connects table entries to a section of code preceding a return. The return is implemented with a macro that has an exit code string as a parameter. If debugging mode is enabled for the appropriate functions these exit codes are displayed. For compare functions use setDbg compare and for limitElement or limitOrd related functions use setDbg limit in the ordinal calculator. In interactive mode exit codes are displayed by the member function .lec.

61 The name of these functions in the C++ source are replace1 and replace2.
Table 36: IterFuncNormalElement::limitElementCom cases

<table>
<thead>
<tr>
<th>X</th>
<th>Condition(s)</th>
<th>LimitTypeInfo</th>
<th>α.le(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF</td>
<td>at least 1 $\beta_i (i > 1)$ is nonzero</td>
<td>paramSucc, paramSuccZero, paramsSucc, paramLimit, paramNxtLimit</td>
<td>FiniteFuncNormalElement::limitElementCom(n)</td>
</tr>
<tr>
<td>IG</td>
<td>γ.isSc \land sz == 0;</td>
<td>functionSucc</td>
<td>$b=\varphi_{\gamma-1}$; Rtn $\varphi_{\gamma-1}(b.lp1,0,...,0)$ (n-1 zeros)</td>
</tr>
<tr>
<td>II</td>
<td>γ.isSc \land β_1.isSc \land sz == 1</td>
<td>functionNxtSucc</td>
<td>b=$\varphi_{\gamma}(\beta_1 - 1)$; Rtn $\varphi_{\gamma-1}(b.lp1,0,...,0)$ (n-1 zeros)</td>
</tr>
<tr>
<td>IJ</td>
<td>γ.isLm \land sz == 0</td>
<td>functionLimit</td>
<td>φ_{γ}.le(n)</td>
</tr>
<tr>
<td>IK</td>
<td>κ.isLm \land sz == 1 \land β_1.isSc</td>
<td>functionNxtLimit</td>
<td>φ_{γ}.le(n)(\varphi_{\gamma}(\beta_0 - 1).lp1)</td>
</tr>
</tbody>
</table>

See Table for examples
<table>
<thead>
<tr>
<th>X</th>
<th>Ordinal</th>
<th>limitElement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 37: IterFuncNormalElement::limitElementCom exit codes
9.3 fixedPoint member function

IterFuncOrdinal::fixedPoint is used by iterativeFunctional to create an instance of an IterFuncOrdinal in a normal form (Equation 23) that is the simplest expression for the ordinal represented. The routine has the following parameters for a single term in Equation 23:

- The function level, γ.
- An index specifying the largest parameter of the ordinal notation being constructed. If the largest parameter is the function level the index has the value iterMaxParam defined as -1 in an enum.
- The function parameters as an array of pointers to Ordinals. These are the β_j in a normal form term.

This function determines if the parameter at the specified index is a fixed point for an IterFuncOrdinal created with the specified parameters. If it is, true is returned and otherwise false. The routine that calls this routine selects the largest parameter from the function level (γ) and the array of Ordinal pointers (β_j) as the one to check and indicates this in the index parameter. The calling routine checks to see if all less significant parameters are 0. If not this cannot be a fixed point. Thus fixedPoint is called only if this condition is met.

Section 8.3 describes psuedoCodeLevel. If the psuedoCodeLevel of the selected parameter is less than or equal to cantorCodeLevel, false is returned. If that level is greater than iterFuncCodeLevel, true is returned. The most significant parameter, the function level, cannot be a fixed point unless it has a psuedoCodeLevel $> \text{iterFuncCodeLevel}$. Thus, if the index selects the function level, and the previous test was not passed false is returned. Finally an IterFuncOrdinal is constructed from all the parameters except that selected by the index. If this value is less than the selected parameter, true is returned and otherwise false.

9.4 operators

The multiply and exponential routines for FiniteFuncOrdinal and Ordinal and the classes for normal form terms CantorNormalElement and FiniteFuncNormalElement do not have functions that need to be overridden to support IterFuncOrdinal multiplication and exponentiation. The exceptions are utilities such as that used to create a copy of normal form term IterFuncNormalElement with a new value for factor.

Some multiply examples are shown in Table 38. Some exponential examples are shown in Table 39.
<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>$\alpha \times \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_1</td>
<td>φ_1</td>
<td>φ_1</td>
</tr>
<tr>
<td>φ_1</td>
<td>φ_3</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_3(1,0,0)$</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>φ_3</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>φ_3</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>φ_3</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>φ_3</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>φ_3</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
<td>$\varphi_1(\omega,1) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
</tbody>
</table>

Table 38: IterFuncOrdinal multiply examples
<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>α^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_1</td>
<td>φ_1</td>
<td>$\omega^{(\varphi_1)}$</td>
</tr>
<tr>
<td>φ_1</td>
<td>φ_3</td>
<td>φ_3</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$\varphi_{e0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{e0} + \varphi_1(\varphi_0 + \varphi_1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_{e0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{e0} + \varphi_1(\varphi_0 + \varphi_1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_{e0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{e0} + \varphi_1(\varphi_0 + \varphi_1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_{e0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{e0} + \varphi_1(\varphi_0 + \varphi_1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_{e0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{e0} + \varphi_1(\varphi_0 + \varphi_1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_{e0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{e0} + \varphi_1(\varphi_0 + \varphi_1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_3(1,0,0)$</td>
<td>$\varphi_3(1,0,0)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1)$</td>
<td>$\varphi_1(\omega,1)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_1(\omega,1,0) + \varphi_1$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$\varphi_{e0} + \varphi_1(\omega,1,0) + \varphi_1$</td>
<td>$\varphi_{e0} + \varphi_1(\varphi_0 + \varphi_1)$</td>
</tr>
</tbody>
</table>

Table 39: IterFuncOrdinal exponential examples
10 Countable admissible ordinals

The first admissible ordinal is ω. ω^{CK} (the Church-Kleene ordinal) is the second. This latter is the ordinal of the recursive ordinals. For simplicity it will be written as ω_1 (see note 5). Gerald Sacks proved that the countable admissible ordinals are those defined like ω_1, but using Turing Machines with oracles (see Note 9)[34]. For example ω_2 is the set of all ordinals whose structure can be enumerated by a TM with an oracle that defines the structure of all recursive ordinals.

One can think of these ordering in terms of well founded recursive functions on integers and subsets of integers. These subsets are neither recursive nor recursively enumerable but they are defined by properties of recursive processes. A first order well founded process is one that accepts an indefinite number of integer inputs and halts for every possible sequence of these inputs. Recursive ordinals are the well orderings definable by such a process. This definition can be iterated by defining a process of type $x + 1$ to be well founded for all sequences of processes of type x. (Type 0 is the integers.) This can be iterated up to any countable ordinal.

The admissible ordinals are a very sparse set of limit ordinals. In this document admissible level ordinals are all ordinals $\geq \omega_1$, the ordinal of the recursive ordinals. The ‘admissible index’ refers to the κ index in ω_κ.

10.1 Generalizing recursive ordinal notations

The ordinals definable in the countable admissible hierarchy can be defined as properties of recursive processes on non recursively enumerable domains. In turn these domains are defined as properties of recursive routines operating on lower level similarly defined domains. This continues down to the the set of notations for recursive ordinals. This suggest an analogue to recursive ordinal notations for ordinal larger than ω_1. This analog involves recursive function on finite symbols from a defined, but not recursively enumerable, domain. The idea is that a complete systems is the limit of an infinite sequences of extensions. The system can never be complete but it should be defined so that it can be expanded without limit.

Two reasons for exploring this hierarchy are its usefulness in expanding the hierarchy of recursive ordinals and its relevance to nondeterministic recursive processes. This approach can expand notation systems for recursive ordinals though a general form of ordinal collapsing. Modified names of admissible level ordinals are used to name larger recursive ordinals. We can always do this no matter how far we extend the hierarchy because the limit of the well orderings fully definable at any finite extension must be recursive. This follows because there is a recursive enumeration of all defined notations and a recursive process for deciding the relative size of any two defined notations.

There are formal system consistency problems or, equivalently, TM halting problems decidable by a specific recursive ordinal and not by smaller ones. However every halting problem is decidable by an ordinal $< \omega_1$, the ordinal of the recursive ordinals. Larger countable ordinals can decide questions that may be of relevance to finite beings in a divergent potentially infinite universe. For example, consider a universe that is finite at any time but potentially infinite and recursively deterministic. The question will a species have an

62A species, in contrast to an individual's direct descendants, can in theory have an infinite number of
infinite chain of descendant species is not in general decidable by a specific recursive ordinal because it requires quantification over the real to state. If we are concerned with questions that extend into an indefinite and possibly divergent future, the mathematics of countable admissible ordinals becomes essential.

10.2 Notations for Admissible level ordinals

Finite notation systems for recursive ordinals can always be expanded to represent larger ordinals. At the admissible level they can be expanded to partially fill gaps between pairs of definable ordinals. The following notations represent larger ordinals at all defined levels of the countable admissible hierarchy starting with the recursive ordinals. They also partially fill gaps between ordinal notations above the level of the recursive ordinals.

The AdmisNormalElement term of an AdmisLevOrdinal is one of the following forms.

\[\omega_{\kappa, \gamma}(\beta_1, \beta_2, ..., \beta_m) \]
\[\omega_{\kappa}[\eta] \]
\[[[\delta]]\omega_{\kappa}[\eta] \]
\[[[\delta]]\omega_{\kappa, \gamma}(\beta_1, \beta_2, ..., \beta_m) \]
\[[[\delta]]\omega_{\kappa}[\eta] \]

The normal form notation for one term of an admissible level ordinal is given in expressions 24 to 28. These expressions add a parameter for the admissible index and a parameter in square brackets which signifies a smaller ordinal than the same term without an appended square bracketed parameter. There is a third option using double square brackets, \[]] as both a prefix and suffix to facilitate a form or collapsing described in Section 10.5.

The rest of the expression is the same as that for an IterFuncOrdinal shown in Expression 23 except \(\varphi \) is replaced with \(\omega \) to signify that this is an admissible level notation. The C++ class for a single term of an admissible level ordinal notation is AdmisNormalElement and the class for an admissible level ordinal notation is AdmisLevOrdinal.

The \(\gamma \) and \(\beta_i \) parameters are defined as they are in expression 23. The existence of any of these parameters defines a larger ordinal than the same notation without them. In contrast to every parameter defined so far, the \(\eta \) parameter drops down to a lower level ordinal to both fill gaps in the notation system and to partially serve the defining function that limitElement has for recursive ordinal notations. These are explained in the next section. For example \(\omega_1 \) is the ordinal of the recursive ordinals but \(\omega_1[\alpha] \) is a recursive ordinal necessarily smaller than \(\omega_1 \) but larger than any recursive ordinal previously defined. The \(\eta \) parameter is only defined when \(\gamma \) and \(\beta_i \) are zero and \(\kappa \) is a successor.

The \(\delta \) parameter, like the \(\eta \) parameter, defines a smaller ordinal than the same expression without this parameter. Any expression that begins with \([[[\delta]]\) will be \(< \omega_0 \) no matter how large other parameters may be. Because \(\omega_\kappa \) with \(\kappa \) as a limit is defined to be \(\bigcup_{\alpha<\kappa} \omega_\alpha \) it is problematic to define what is meant by a \(\delta \) prefix that is a limit. Thus \(\delta \) must always be a direct descendant species. Thus this question requires quantification over the reals to state.
successor \leq \kappa. In addition if \(\delta = \kappa \) and the single bracketed \([\eta]\) suffix occurs, the \(\delta \) prefix has no affect and is deleted.

The relationship between the \([\delta]\) prefix and other parameters requires elaboration. Every parameter of an ordinal with a \(\delta \) prefix has the global value of \([\delta]\) applied to it unless it has a smaller \([\delta]\) prefix. A larger internal value for \(\delta \), as part of a parameter, is not allowed.

10.3 Typed parameters and limitOrd

Notations defined in previous sections give the structure of ordinals through the limitElement and compare member functions. For admissible level ordinals, compare is adequate, although it is now operating on an incomplete domain. However limitElement can no longer define how a limit ordinal is built up from smaller ordinals. Admissible level notations for limit ordinals cannot in general be defined as the limit of ordinals represented by a recursive sequence of notations for smaller ordinals.

limitOrd, and isValidLimitOrdParam are defined as an analog to the limitElement Ordinal member function.

\[\alpha = \bigcup_{n \in \omega} \alpha.\text{limitElement}(n) \]

and

\[\alpha = \bigcup \beta: \alpha.\text{isValidLimitOrdParam}(\beta) \alpha.\text{limitOrd}(\beta) \]

The system is designed so that the notations, \(\beta \), that satisfy \(\omega_1.\text{isValidLimitOrdParam}(\beta) \) can be expanded to include notations for any recursive ordinal. In general the notations, \(\beta \), satisfying \(\omega_\alpha.\text{isValidLimitOrdParam}(\beta) \) should be expandable to represent any ordinal \(< \omega_\alpha \).

There are three functions used by isValidLimitOrdParam: limitType, maxLimitType and embedType. Successor ordinal notations have limitType = 0 or nullLimitType. Notations for recursive limit ordinals represent the union of ordinals represented by a recursive sequence of notations for smaller ordinals. These have 1 (or integerLimitType) as their limitType. \(\omega_1.\text{limitType} = 2 \) or recOrdLimitType. \(\omega_n.\text{limitType} = n + 1 \). For infinite \(\alpha \), \(\omega_\alpha.\text{limitType} = \alpha \). \(\alpha.\text{maxLimitType} \) is the maxima of \(\beta.\text{limitType} \) for \(\beta \leq \alpha \). For ordinals, \(\alpha \) without a \([\delta]\) prefix: \(\alpha.\text{isValidLimitOrdParam}(\beta) \equiv \alpha.\text{limitType} > \beta.\text{maxLimitType} \).

Any ordinal with prefix \([\delta]\) must be \(< \omega_\delta \). This puts upper bounds on both limitType and maxLimitType.

embedType returns a null pointer and is ignored unless \(\delta = \kappa \) in \([\delta]\)\(\omega_\delta\). It is only used to facilitate ordinal collapsing as discussed in Section 11.3. \(\alpha.\text{isValidLimitOrdParam}(\beta) \) first tests if \(\beta.\text{maxLimitType}() \) \(< \alpha.\text{limitType}() \). If this is true it return true. If they are equal and embedType is not null the boolean expression \(\alpha > \beta \) is returned.

All of these new member functions are recursive in the domain of defined ordinal notations. Because this domain is incomplete at and beyond some recursive ordinal these functions need to be expanded as the notations are expanded. In C++ that can be accomplished.

63 The equalities refer to the notations represented by the ordinal notations.

64 limitOrd, limitType, and maxLimitType are all member functions in the ordinal calculator. In addition embedType, if it is not empty, plus the other functions mentioned have their values displayed by the limitExitCode or alternatively the lec ordinal calculator member function.

65 embedType if non null is a pointer to an ordinal one greater than limitType but this value does not need to be tested in isValidLimitOrdParam.
nullLimitType = 0, integerLimitType = 1, recOrdLimitType = 2

<table>
<thead>
<tr>
<th>α</th>
<th>α.limitType</th>
<th>α.maxLimitType</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer ≥ 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>infinite recursive ordinal (< ω₁)</td>
<td>≤ 1</td>
<td>1</td>
</tr>
<tr>
<td>recursive limit ordinal</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ω₁ ≤ α < ω₂</td>
<td>≤ 2</td>
<td>2</td>
</tr>
<tr>
<td>ωₙ ≤ α < ωₙ₊₁</td>
<td>≤ n + 1</td>
<td>n+1</td>
</tr>
<tr>
<td>α = ω₀</td>
<td>1</td>
<td>ω</td>
</tr>
<tr>
<td>ω₀ + 5 ≤ α < ω₀ + 6</td>
<td>≤ ω + 5</td>
<td>ω + 5</td>
</tr>
<tr>
<td>α = ω₁</td>
<td>2</td>
<td>ω₁</td>
</tr>
<tr>
<td>ω₁ + 1 ≤ α < ω₁ + 2</td>
<td>≤ ω₁ + 1</td>
<td>ω₁ + 1</td>
</tr>
</tbody>
</table>

Table 40: limitType and maxLimitType examples

by making them virtual functions. The notation system should be expanded so the existing limitOrd function continues to work for parameters that meet the isValidLimitOrdParam constraint.

For example the limitOrd function applied to the notation for the Church-Kleene ordinal must be able to operate on an expanded notation system that could include a notation for any recursive ordinal. Because ω₁.limitType = 2 and maxLimitType for any recursive ordinal is 1 or 0, there is a trivial way to do this. Define ω₁.limitOrd to be the identity function that accepts any notation for a recursive ordinal as input and outputs its input. Then the union of the outputs for inputs satisfying this criteria is ω₁. This is not the way limitOrd is defined. It is used to define new ordinals that help to fill the gaps between admissible levels, but this illustrates how limitOrd is able to partially provide the defining function that limitElement serves for recursive ordinal notations.

Table 40 shows the value of limitType and maxLimitType over ranges of ordinal values. The explicitly typed hierarchy in this document is a bit reminiscent of the explicitly typed hierarchy in Whitehead and Russell’s Principia Mathematica[36].

The idea of the δ parameter is to embed the notation system within itself in complex ways a bit like the Mandelbrot set[26] is embedded in itself. Table 41 gives the equations that define the the η suffix with single and double square brackets. The top two line of this table define [[δ]ωₖ[η]] and [[δ]ωₖ[[η]] for η a limit in an obvious way. A single bracketed suffix (as in the first case) requires that δ ≠ κ. In all cases δ ≤ κ.

The rest of the table deals with η a successor. For various values of δ, κ and ([η] or [[η]]) the table defines α₀ and αᵢ such that either

$$[[δ]ωₖ[η]] = \bigcup_{i ∈ ω} αᵢ$$

or

$$[[δ]ωₖ[[η]]] = \bigcup_{i ∈ ω} αᵢ.$$

The Rf column of this table refers to lines in table 42 with examples.
For η a limit $[\delta]|\omega_\kappa[\eta] = \bigcup_{\mu \in \eta}[\delta]|\omega_\kappa[\mu]$ and $[\delta]|\omega_\kappa[\eta] = \bigcup_{\mu \in \eta}[\delta]|\omega_\kappa[\mu]$

$\text{Sp}(\alpha)$ says α is a successor > 1. κ must be a successor with nonzero η.

$l p 1$ means limPlus_1 which avoids a fixed point by adding 1

if $\text{pseudoCodeLevel} > \text{cantorCodeLevel}$ (Section 8.3).

The Rf column is the line in Table 42 of an example.

For δ, κ and η (satisfying η) this table defines α_0 and α_i such that $[\delta]|\omega_\kappa[\eta] = \bigcup_{i \in \omega}\alpha_i$ or $[\delta]|\omega_\kappa[\eta] = \bigcup_{i \in \omega}\alpha_i$

<table>
<thead>
<tr>
<th>δ</th>
<th>κ</th>
<th>η</th>
<th>α_0</th>
<th>α_{i+1}</th>
<th>Rf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>ω</td>
<td>$\varphi_{\omega,1p1}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$\text{Sp}(\kappa)$</td>
<td>1</td>
<td>$\omega_{\kappa-1}$</td>
<td>$\omega_{\kappa-1,1p1}$</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>$\delta = \kappa$</td>
<td>κ</td>
<td>η</td>
<td>$\text{Not allowed: } \eta \text{ requires } \delta < \kappa$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta < \kappa$</td>
<td>κ</td>
<td>$[\eta > 1]$</td>
<td>$[\delta]</td>
<td>\omega_\kappa[\eta-1]$</td>
<td>$\omega_{\kappa-1,\alpha_i}$</td>
</tr>
<tr>
<td>$\delta < \kappa$</td>
<td>κ</td>
<td>$[\eta > 1]$</td>
<td>$[\delta]</td>
<td>\omega_\kappa[\eta-1]$</td>
<td>ω_{κ,α_i}</td>
</tr>
</tbody>
</table>

Table 41: Equations for $[\delta]|, [\eta]$ and $[[\eta]]$

<table>
<thead>
<tr>
<th>Rf</th>
<th>Ordinal</th>
<th>limitElements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\omega_1[1]$</td>
<td>ω</td>
</tr>
<tr>
<td>2</td>
<td>$[1]</td>
<td>\omega_1[1]$</td>
</tr>
<tr>
<td>3</td>
<td>$[1]</td>
<td>\omega_1[3]$</td>
</tr>
<tr>
<td>5</td>
<td>$[1]</td>
<td>\omega_2[5]$</td>
</tr>
<tr>
<td>6</td>
<td>$[1]</td>
<td>\omega_2[1]$</td>
</tr>
<tr>
<td>7</td>
<td>$[1]</td>
<td>\omega_2[4]$</td>
</tr>
<tr>
<td>8</td>
<td>$[1]</td>
<td>\omega_2$</td>
</tr>
<tr>
<td>9</td>
<td>$\omega_2[1]$</td>
<td>ω_1</td>
</tr>
<tr>
<td>10</td>
<td>$\omega_2[2]$</td>
<td>$\omega_2[1]$</td>
</tr>
<tr>
<td>11</td>
<td>$[2]</td>
<td>\omega_2[1]$</td>
</tr>
<tr>
<td>12</td>
<td>$\omega_3[1]$</td>
<td>ω_2</td>
</tr>
<tr>
<td>13</td>
<td>$\omega_3[2]$</td>
<td>$\omega_3[1]$</td>
</tr>
</tbody>
</table>

Table 42: $[\delta]|, [\eta]|$ and $[[\eta]]$ parameter examples in increasing order
10.4 limitType of admissible level notations

The \(\kappa \) parameter in expressions 24 to 28 determines the limitType of an admissible level notation with no other nonzero parameters. If \(\kappa \) is a limit then \(\omega_\kappa.\text{limitType}() = \kappa.\text{limitType}() \). If \(\kappa \) is a finite successor then \(\omega_\kappa.\text{limitType}() = \kappa + 1 \). If \(\kappa > \omega \) and \(\kappa \) is a successor then \(\omega_\kappa.\text{limitType}() = \kappa \).

If an admissible level ordinal, \(\alpha \), has parameters other than \(\kappa \), then the one or two least significant nonzero parameters determine the limitType of \(\alpha \). If the least significant parameter, \(\alpha_l \), is a limit ordinal then \(\alpha.\text{limitType}() = \alpha_l.\text{limitType}() \). \(\alpha.\text{limitType}() = 1 \) or integerLimitType of any of the following conditions hold.

- \(\gamma \) is a successor and the least significant parameter.
- There is at least one \(\beta_i = 0 \) and a more significant \(\beta_i \) that is the least significant nonzero parameter.
- The least significant two parameters are successors.

If the above do not hold and the least significant parameter is a successor and the next least significant, \(\alpha_n \), is a limit then \(\alpha.\text{limitType}() = \alpha_n.\text{limitType}() \). There is a more complete description of these rules and their affects on limitElement and limitOrd in sections 11.2 and 11.6.

10.5 Ordinal collapsing

Collapsing\(^\text{66}\) expands recursive ordinal notations using larger ordinals (countable or uncountable) to name them\(^\text{3, 30}\). There is an element of collapsing with the \(\eta \) parameter in square brackets defined in Section 10.2 in that it diagonalizes the earlier definitions of recursive ordinals by referencing a higher level notation. Before describing collapsing with the \(\delta \) parameter, we give a brief overview of an existing approach.

One can define a collapsing function, \(\Psi(\alpha) \) on ordinals to countable ordinals\(^\text{67}\). \(\Psi(\alpha) \) is defined using a function \(C(\alpha) \), from ordinals to sets of ordinals. \(C(\alpha) \) is defined inductively on the integers for each ordinal \(\alpha \) using \(\Psi(\beta) \) for \(\beta < \alpha \).

\[
\begin{align*}
C(\alpha)_0 &= \{0, 1, \omega, \Omega\} \ (\Omega, \text{is the ordinal of the countable ordinals.}) \\
C(\alpha)_{n+1} &= C(\alpha)_n \cup \{\beta_1 + \beta_2, \beta_1\beta_2, \beta_1^\beta_2 : \beta_1, \beta_2 \in C(\alpha)_n \} \cup \{\Psi(\beta) : \beta \in C(\alpha)_n \land \beta < \alpha\} \\
C(\alpha) &= \bigcup_{n \in \omega} C(\alpha)_n.
\end{align*}
\]

\(^\text{66}\)Ordinal collapsing is also known as projection. I prefer the term collapsing, because I think the proofs have more to do with syntactical constructions of mathematical language than they do with an abstract projection in a domain the symbols refer to. Specifically I think cardinal numbers, on which projection is most often based, have only a relative meaning. See Section 14 for more about this philosophical approach.

\(^\text{67}\)This description is largely based on the Wikipedia article on “Ordinal collapsing function” as last modified on April 14, 2009 at 15:48. The notation is internally consistent in this document and differs slightly from the Wikipedia notation.
• $\Psi(\alpha)$ is defined as the least ordinal not in $C(\alpha)$.

$\Psi(0) = \varepsilon_0$ because ε_0 is the limit of $\omega, \omega^\omega, \omega^{\omega^\omega}, \ldots$.

Similarly $\Psi(1) = \varepsilon_1$, because $C(1)$ includes $\Psi(0)$ which is ε_0. For a while $\Psi(\alpha) = \varepsilon_\alpha$. This stops at $\varphi(2, 0)$ which is the first fixed point of $\alpha \mapsto \varepsilon_\alpha$. $\Psi(\varphi(2, 0)) = \varphi(2, 0)$ but $\Psi(\varphi(2, 0) + 1) = \varphi(2, 0)$ also. The function remains static because $\varphi(2, 0)$ is not in $C(\alpha)$ for $\alpha \leq \Omega$.

$\Psi(\Omega) = \varphi(2, 0)$, but Ω was defined to be in $C(\alpha)_0$ and thus $C(\Omega + 1)$ includes $\Psi(\Omega)$ which is $\varphi(2, 0)$. Thus $\Psi(\Omega + 1) = \varepsilon_{\varphi(2, 0) + 1}$. $\Psi(\alpha)$ becomes static again at $\alpha = \varphi(2, 1)$ the second fixed point of $\alpha \mapsto \varepsilon_\alpha$. However ordinals computed using Ω support getting past fixed points in the same way that Ω did. The first case like this is $\Psi(\Omega^2) = \varphi(2, 1)$ and thus $\Psi(\Omega^2 + 1) = \varepsilon_{\varphi(2, 1) + 1}$.

Each addition of 1 advances to the next ε value until Ψ gets stuck at a fixed point. Each addition of Ω moves to the next fixed point of $\alpha \mapsto \varepsilon_\alpha$ so that $\Psi(\Omega(1 + \alpha)) = \varphi(2, \alpha)$ for $\alpha < \varphi(3, 0)$. Powers of Ω move further up the Veblen hierarchy: $\Psi(\Omega^2) = \varphi(3, 0)$, $\Psi(\Omega^3) = \varphi(1 + \beta, 0)$ and $\Psi(\Omega^{\beta}(1 + \alpha)) = \varphi(1 + \beta, \alpha)$. Going further $\Psi(\Omega^\Omega) = \Gamma(0) = \varphi(1, 0, 0)$, $\Psi(\Omega^{\Omega(1 + \alpha)}) = \varphi(\alpha, 0, 0)$ and $\Psi(\Omega^{\Omega^2}) = \varphi(1, 0, 0, 0)$.

Collapsing, as defined here, connects basic ordinal arithmetic (addition, multiplication and exponentiation) to higher level ordinal functions. Ordinal arithmetic on Ω gets past fixed points in the definition of Ψ until we reach an ordinal that is not in $C(\alpha)$ either by definition or by basic ordinal arithmetic on ordinals in $C(\alpha)$. This is the ordinal $\varepsilon_{\Omega + 1}$\footnote{Note $\varepsilon_\Omega = \Omega$.}, $\Psi(\varepsilon_{\Omega + 1}) = \Psi(\Omega) \cup \Psi(\Omega^\Omega) \cup \Psi(\Omega^{\Omega^\Omega}) \cup \Psi(\Omega^{\Omega^{\Omega^\Omega}}) \cup \ldots$. This is the Bachmann-Howard ordinal\cite{21}. It is the largest ordinal in the range of Ψ as defined above. $\Psi(\alpha)$ is a constant for $\alpha \geq \varepsilon_{\Omega + 1}$ because there is no way to incorporate $\Psi(\varepsilon_{\Omega + 1})$ into $C(\alpha)$. \hspace{1cm}
<table>
<thead>
<tr>
<th>#</th>
<th>Ψ</th>
<th>φ</th>
<th>ω</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Psi(\alpha)$</td>
<td>ξ_α</td>
<td></td>
<td>$\alpha < \varphi(2,0)$</td>
</tr>
<tr>
<td>2</td>
<td>$\Psi(\Omega 1\beta)$</td>
<td>$\varphi(2,12)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\Psi(\Omega(1 + \alpha))$</td>
<td>$\varphi(2,\alpha)$</td>
<td></td>
<td>$\alpha < \varphi(3,0)$</td>
</tr>
<tr>
<td>4</td>
<td>$\Psi(\Omega^{\Omega2})$</td>
<td>$\varphi(3,5)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\Psi(\Omega^{\Omega2}(1 + \alpha))$</td>
<td>$\varphi(3,\alpha)$</td>
<td></td>
<td>$\alpha < \varphi(4,0)$</td>
</tr>
<tr>
<td>6</td>
<td>$\Psi(\Omega^{\Omega1\beta})$</td>
<td>$\varphi(12,5)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$\Psi(\Omega^{\Omega2}(1 + \alpha))$</td>
<td>$\varphi(1 + \beta,\alpha)$</td>
<td></td>
<td>$\alpha < \varphi(1 + \beta,0) \land \beta < \varphi(1,0,0)$</td>
</tr>
<tr>
<td>8</td>
<td>$\Psi(\Omega^{\Omega\Omega})$</td>
<td>$\varphi(1,0,0) = \Gamma_0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$\Psi(\Omega^{\Omega\Omega2})$</td>
<td>$\varphi(2,0,0)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\Psi(\Omega^{\Omega^{\Omega2} + 3})$</td>
<td>$\varphi(2,3,5)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$\Psi(\Omega^{\Omega\Omega2})$</td>
<td>$\varphi(1,0,0,0)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$\Psi(\Omega^{\Omega\Omega\Omega})$</td>
<td>$\varphi(1,0,2,...,0_{n+2})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$\Psi(\Omega^{\Omega\Omega\Omega\Omega})$</td>
<td>$\varphi(\alpha_1,0_2,...,0_{n+2})$</td>
<td></td>
<td>$\alpha_1 < \varphi(1_1,0_2,...,0_{n+3})$</td>
</tr>
<tr>
<td>14</td>
<td>$\Psi(\Omega^{\Omega\Omega\Omega\Omega\Omega})$</td>
<td>φ_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega}})$</td>
<td>$\varphi_1(5)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega}(1 + \alpha)})$</td>
<td>$\varphi_1(\alpha)$</td>
<td></td>
<td>$\alpha < \varphi_1(1,0)$</td>
</tr>
<tr>
<td>17</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega}(1 + \alpha)}(1 + \Omega\Omega\Omega\Omega\Omega))$</td>
<td>$\varphi_1(4,2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega\Omega\Omega}})$</td>
<td>φ_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega\Omega\Omega}})$</td>
<td>φ_ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega\Omega\Omega}})$</td>
<td>φ_ω</td>
<td></td>
<td>$\alpha < \omega_1[1]$</td>
</tr>
<tr>
<td>21</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega\Omega\Omega}(1 + \Omega\Omega\Omega\Omega\Omega\Omega)})$</td>
<td>φ_ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega\Omega\Omega\Omega}})$</td>
<td>φ_{ω_1}</td>
<td></td>
<td>$\omega_1[1]$</td>
</tr>
<tr>
<td>23</td>
<td>$\Psi(\Omega^{\Omega^{\Omega\Omega\Omega\Omega\Omega\Omega\Omega}})$</td>
<td>φ_{ω_2}</td>
<td></td>
<td>$\omega_2[1]$</td>
</tr>
<tr>
<td>24</td>
<td>$\Psi(\varepsilon_{\Omega+1})$</td>
<td>$\varepsilon_{\omega_{\omega_1}}$</td>
<td></td>
<td>ω_{ω_2}</td>
</tr>
</tbody>
</table>

Table 43: Ψ collapsing function with bounds
<table>
<thead>
<tr>
<th>#</th>
<th>Notation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Psi(\Omega)^1$ $\varphi(2,0)$</td>
<td>ε_1</td>
<td>$\varepsilon_{\varepsilon_1+1}$</td>
<td>$\varepsilon_{\varepsilon_{\varepsilon_1+1}+1}$</td>
<td>$\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_1+1}+1}+1}}$</td>
</tr>
<tr>
<td>2</td>
<td>$\Psi(\Omega^2)$ $\varphi(3,0)$</td>
<td>ε_0</td>
<td>$\Psi(\varepsilon)$ $\varphi(2,0)$</td>
<td>$\Psi(\varepsilon_1)$ $\varphi(3,0)$</td>
<td>$\Psi(\varepsilon_2)$ $\varphi(4,0)$</td>
</tr>
<tr>
<td>3</td>
<td>$\Psi(\Omega^\omega)$ $\varphi(\omega,0)$</td>
<td>ε_0</td>
<td>ε_0</td>
<td>ε_0</td>
<td>ε_0</td>
</tr>
<tr>
<td>4</td>
<td>$\Psi(\Omega^\Omega)$</td>
<td>ε_0</td>
<td>ε_0</td>
<td>ε_0</td>
<td>ε_0</td>
</tr>
<tr>
<td>5</td>
<td>$\Psi(\Omega^{\Omega^2})$ $\varphi(1,0,0,0)$</td>
<td>$\varphi(1,0,0,0)$</td>
<td>$\varphi(1,0,0,0)$</td>
<td>$\varphi(1,0,0,0)$</td>
<td>$\varphi(1,0,0,0)$</td>
</tr>
<tr>
<td>6</td>
<td>$\Psi(\Omega^{\Omega^3})$</td>
<td>φ_1</td>
<td>ε_0</td>
<td>Γ_0</td>
<td>Γ_0</td>
</tr>
<tr>
<td>7</td>
<td>$\Psi(\Omega^{\Omega^4})$</td>
<td>φ_1</td>
<td>φ_1</td>
<td>φ_1</td>
<td>φ_1</td>
</tr>
<tr>
<td>8</td>
<td>$\Psi(\Omega^{\Omega^5})$</td>
<td>φ_1</td>
<td>φ_2</td>
<td>φ_3</td>
<td>φ_4</td>
</tr>
<tr>
<td>9</td>
<td>not Ψ displayable $\omega_1[1]$</td>
<td>ω</td>
<td>ω</td>
<td>ω</td>
<td>ω</td>
</tr>
<tr>
<td>10</td>
<td>not Ψ displayable $\omega_1[3]$</td>
<td>not Ψ displayable $\omega_1[2]$</td>
<td>not Ψ displayable $\omega_1[3]$</td>
<td>not Ψ displayable $\omega_1[4]$</td>
<td>not Ψ displayable $\omega_1[4]$</td>
</tr>
<tr>
<td>11</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^1}})$ $[[1]</td>
<td>\omega_1]$</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^1}})$ $[[1]</td>
<td>\omega_1[1]]$</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^1}})$ $[[1]</td>
</tr>
<tr>
<td>12</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^2}})$ $[[1]</td>
<td>\omega_2]$</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^2}})$ $[[1]</td>
<td>\omega_2[1]]$</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^2}})$ $[[1]</td>
</tr>
<tr>
<td>13</td>
<td>$\Psi(\varepsilon_{\Omega+1})$ $[[1]</td>
<td>\omega_\omega]$</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^{\Omega^1}}})$ $[[1]</td>
<td>\omega_3]$</td>
<td>$\Psi(\Omega^{\Omega^{\Omega^{\Omega^1}}})$ $[[1]</td>
</tr>
</tbody>
</table>

Table 44: Ψ collapsing function at critical limits
Table 43 connects the notations defined by the \(\Psi \) function to those defined with expressions 20, 22, 23 and 24 to 28. Lines up to 12 follow from the above description. This line uses parameter subscripts to indicate the number of parameters. Otherwise it is straightforward. In line 14 \(\phi_1 \) is the first fixed point not reachable from Veblen functions with a finite number of parameters. \(\phi_1 = \bigcup_{n \in \omega} \phi(1, 0_2, 0_3, \ldots, 0_n) \). Lines 18, 19 and 20 illustrate how each increment of \(\alpha \) by one in \(\phi_\alpha \) adds a factor of \(\omega \) to the the highest order exponent in \(\Psi \) notation. This maps to the definition of \(\phi_\alpha \) in Section 7.5.

Table 44 provides additional detail to relate the \(\Psi \) notation to the notation in this document. It covers the range of the \(\Psi \) function at critical limits. For each entry the table gives the ordinal notation and first 4 elements in a limit sequence that converges to this ordinal. This same information is repeated in paired lines. The first is in \(\Psi \) notation and the second in the notation defined in this document. It illustrates the conditions in which the \(\Psi \) notation requires another level of exponentiation. This happens with limiting sequences that involve ever higher levels of exponentiation of the largest ordinals defined at that level in the \(\Psi \) notation. This occurs in lines 4, 9, 11 and 12 of the table corresponding to \(\Omega \).

10.6 Displaying Ordinals in \(\Psi \) format

Function `Ordinal::psiNormalForm` provides an additional display option for the \(\Psi \) function format. Not all values can be converted. This is due in part to the erratic nature of \(\Psi \) as it gets stuck at various fixed points. The purpose is to provide an automated conversion that handles the primary cases throughout the \(\Psi \) hierarchy. If a value is not displayable then the string ‘not \(\Psi \) displayable’ is output in \TeX format. Two tables in this section use `psiNormalForm`. It is accessible in the interactive calculator as described in Section B.8.2 under the `opts` command.

10.7 Admissible level ordinal collapsing

For any two ordinals \(\omega_\alpha \) and \(\omega_\alpha + 1 \) there is an unclosable gap into which one can embed the ordering structure of any finite recursive notation system. As mentioned before finite formulations of a fragment of the countable admissible level hierarchy are a bit like the Mandelbrot set where the entire structure is embedded again and again at many points in an infinite tree.

The idea is to “freeze” the structure at some point in its development and then embed this frozen image in an unfrozen version of itself. It is a bit like taking recursion to a higher level of abstraction. The notation is frozen by not allowing any values beyond the frozen level as \(\eta \) parameters. It puts no constraints on the other parameters. In a sense it brings the entire hierarchy of notations at this stage of development into representations for ordinals less than the level at which the notation system is frozen.

The relevant expressions are 26\(([\delta] \omega_\kappa[\eta]) \), 27\(([\delta] \omega_\kappa, \gamma(\beta_1, \beta_2, \ldots, \beta_m)) \) and 28\(([\delta] \omega_\kappa[[\eta]]) \). They define a value \(< \omega_\delta \) regardless of the size of \(\kappa \) and other parameters (excluding \(\eta \) which is constrained by \(\delta \)). It is required that \(\kappa \geq \epsilon^{69} \). The idea is to use notations up

\footnote{Note that any notation from expressions 26, 27 and 28 with prefix `[1]` must define a recursive ordinal.}
through any ω_κ definable in the frozen system to define ordinal notations $< \omega_6$ in the unfrozen system.

This starts by diagonalizing what can be defined with $\omega_\kappa[\eta]$. See Table 45 for the definition of $[[1]]\omega_1$. The complete definition of δ (and the other parameters in expressions 26, 27 and 28) are in sections 11.2 and 11.6 that document the `limitElement` and `limitOrd` member functions.
<table>
<thead>
<tr>
<th>α</th>
<th>$\alpha.\text{limitElement}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>ω_1</td>
</tr>
<tr>
<td>$\omega_1[1]$</td>
<td>$\omega_1[1][1]$</td>
</tr>
<tr>
<td>$\omega_1[1][1]$</td>
<td>$\omega_1[1][2]$</td>
</tr>
<tr>
<td>$\omega_1[1][2]$</td>
<td>$\omega_1[1][3]$</td>
</tr>
<tr>
<td>$\omega_1[1][3]$</td>
<td>$\omega_1[1][4]$</td>
</tr>
<tr>
<td>$\omega_1[2]$</td>
<td>$\omega_1[1][1]$</td>
</tr>
<tr>
<td>$\omega_1[1][1]$</td>
<td>$\omega_1[1][2]$</td>
</tr>
<tr>
<td>$\omega_1[1][2]$</td>
<td>$\omega_1[1][3]$</td>
</tr>
<tr>
<td>$\omega_1[1][3]$</td>
<td>$\omega_1[1][4]$</td>
</tr>
<tr>
<td>$\omega_1[3]$</td>
<td>$\omega_1[1][1]$</td>
</tr>
<tr>
<td>$\omega_1[1][1]$</td>
<td>$\omega_1[1][2]$</td>
</tr>
<tr>
<td>$\omega_1[1][2]$</td>
<td>$\omega_1[1][3]$</td>
</tr>
<tr>
<td>$\omega_1[1][3]$</td>
<td>$\omega_1[1][4]$</td>
</tr>
<tr>
<td>$\omega_1[4]$</td>
<td>$\omega_1[1][1]$</td>
</tr>
<tr>
<td>$\omega_1[1][1]$</td>
<td>$\omega_1[1][2]$</td>
</tr>
<tr>
<td>$\omega_1[1][2]$</td>
<td>$\omega_1[1][3]$</td>
</tr>
<tr>
<td>$\omega_1[1][3]$</td>
<td>$\omega_1[1][4]$</td>
</tr>
</tbody>
</table>

Table 45: Structure of $[[1]]\omega_1$
11 AdmisLevOrdinal class

The AdmisLevOrdinal class constructs notations for countable admissible ordinals beginning with the Church-Kleene or second admissible ordinal\(^70\). This is the ordinal of the recursive ordinals. class AdmisLevOrdinal is derived from base classes starting with IterFuncOrdinal. The Ordinals it defines can be used in constructors for base class objects. However AdmisLevOrdinals are different from ordinals constructed with its base classes. For every recursive ordinal there is a finite notation system that can enumerate a notation for that ordinal and every ordinal less than it. This is not true for the ordinal of the recursive ordinals or larger ordinals.

Four new member functions: limitOrd, isValidLimitOrdParam, limitType, embedType and maxLimitType support this level of the ordinal hierarchy. These functions are outlined in Section 10 and described in detail in sections 11.3 to 11.5.

C++ class AdmisLevOrdinal uses an expanded version of the normal form in expression 23 given in expressions 24 to 28. The class for a single term of an AdmisLevOrdinal is AdmisNormalElement. It is derived from IterFuncNormalElement and its base classes.

All parameters (except κ) can be zero. Omitted parameters are set to 0. To omit κ use the notation for an IterFuncOrdinal in Expression 23. κ is the admissible index, i.e. (the κ in ω_κ). ω_1 is the ordinal of the recursive ordinals or the smallest ordinal that is not recursive. The expanded notation at this level is specified in Section 10.2. Parameters γ and β_i have a definition similar to that in Table 36 and are explained in section 11.2 on AdmisNormalElement::limitElement and section 11.6 on AdmisNormalElement::limitOrd as are the new parameters in this class: κ, η and δ.

The AdmisLevOrdinal class should not be used directly to create ordinal notations. Instead use function admisLevelFunctional which checks for fixed points and creates unique notations for each ordinal\(^71\). This function takes up to five arguments. The first two are required and the rest are optional. The first gives the admissible ordinal index, the κ in ω_κ. The second gives the level of iteration or the value of γ in expressions 24 and 27. The third gives a NULL terminated array of pointers to Ordinals which are the β_i in expressions 24 and 27. This parameter is optional and can be created with function createParameters described in Section 8. The fourth parameter is an ordinal reference that defaults to 0. It is the value of η in expressions 25 and 26. The fifth parameter is an Ordinal reference which defaults to zero. It is the value of δ in expressions 26, 27 and 28. Some examples are shown in Table 46. An alternative way of defining these ordinals in C++ format is with the cppList command in the ordinal calculator. Some examples of this output are shown in Figure 4.

11.1 compare member function

AdmisNormalElement::compare is called from a notation for one term in the form of expressions 24 to 28. It compares the CantorNormalElement parameter trm, against the AdmisNormalElement instance compare is called from. As with FiniteFuncOrdinals and

\(^70\)The first admissible ordinal is the ordinal of the integers, ω.

\(^71\)In the interactive ordinal calculator one can use notations like [[delta] omega, { kappa, lambda}] (b1,b2,...,bn). For more examples see sections B.11.7, B.11.8 and B.11.9.
/a = w
const Ordinal& a = expFunctional(Ordinal::one) ;

//b = psi_{1}(1, 0)
const Ordinal& b = iterativeFunctional(
 Ordinal::one,
 Ordinal::one,
 Ordinal::zero) ;

//c = omega_{1}(1, 1, 0)
const Ordinal& c = admisLevelFunctional(
 Ordinal::one,
 Ordinal::zero,
 createParameters(
 &(Ordinal::one),
 &(Ordinal::one),
 &(Ordinal::zero))
) ;

//d = omega_{1}
const Ordinal& d = admisLevelFunctional(
 Ordinal::one,
 Ordinal::zero,
 NULL
) ;

//e = omega_{1}[epsilon(0)]
const Ordinal& e = admisLevelFunctional(
 Ordinal::one,
 Ordinal::zero,
 NULL,
 psi(Ordinal::one, Ordinal::zero)
) ;

Figure 4: Defining AdmisLevOrdinals with cppList
IterFuncOrdinals, the work of comparing Ordinals with multiple terms is left to the Ordinal and OrdinalImpl base class functions.

AdmisNormalElement::compare, with a CantorNormalElement and an ignore factor flag as arguments, overrides IterFuncNormalElement::compare with the same arguments (see Section 9.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argument. There are two versions of AdmisNormalElement::compare the first has two arguments as described above. The second is for internal use only and has two additional ‘context’ arguments. the context for the base function and the context for the argument. The context is the value of the δ parameter in force at this stage of the compare. The three base classes on which AdmisNormalElement is built also support this context sensitive version of compare.

compare first checks if its argument’s codeLevel is $>$ admisCodeLevel. If so it calls a higher level routine by calling its argument’s member function. The code level of the class object that AdmisNormalElement::compare is called from should always be admisCodeLevel.

The δ parameter makes comparisons context sensitive. The δ values of the base object and compare’s parameter are relevant not just for comparing the two class instances but also for all comparisons of internal parameters of those instances. Thus the context sensitive version of compare passes the δ values to compares that are called recursively. For base classes that AdmisNormalElement is derived from, these additional arguments are only used to pass on to their internal compare calls. The δ values contexts only modify the meaning of ordinal notations for admissible level ordinals. The context sensitive version of the virtual

<table>
<thead>
<tr>
<th>'cp' stands for createParameters and 'af' stands for admisLevelFunctional</th>
<th>Ordinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>af(zero, zero, cp(&one))</td>
<td>ω_1</td>
</tr>
<tr>
<td>af(zero, one, cp(&one, &zero))</td>
<td>$\omega_1(1, 0)$</td>
</tr>
<tr>
<td>af(one, zero, cp(&one, &one, &zero))</td>
<td>$\omega_1(1, 1, 0)$</td>
</tr>
<tr>
<td>af(one, zero)</td>
<td>ω_1</td>
</tr>
<tr>
<td>af(one, zero, NULL, eps0)</td>
<td>$\omega_1[\varepsilon_0]$</td>
</tr>
<tr>
<td>af(one, zero, NULL, Ordinal::five)</td>
<td>$\omega_1[5]$</td>
</tr>
<tr>
<td>af(one, omega1CK, cp(&one))</td>
<td>$\omega_{1,\omega_1}(1)$</td>
</tr>
<tr>
<td>af(one, one, cp(&one, &omega1CK))</td>
<td>$\omega_{1,1}(1, \omega_1)$</td>
</tr>
<tr>
<td>af(one, Ordinal::two, cp(&one, &omega, &zero))</td>
<td>$\omega_{1,2}(1, \omega, 0)$</td>
</tr>
<tr>
<td>af(omega, omega, cp(&one, &omega1CK, &zero, &zero))</td>
<td>$\omega_{\omega,\omega}(1, \omega_1, 0, 0)$</td>
</tr>
<tr>
<td>af(omega1CK, omega)</td>
<td>$\omega_{\omega_1,\omega}$</td>
</tr>
<tr>
<td>af(one, one, &iterativeFunctional(omega)))</td>
<td>ω_{ω_1}</td>
</tr>
<tr>
<td>af(one, zero), NULL, zero)</td>
<td>ω_{ω_2}</td>
</tr>
<tr>
<td>af(Ordinal::two, zero, NULL, zero, Ordinal::two)</td>
<td>$[2] \omega_2$</td>
</tr>
<tr>
<td>af(Ordinal::omega, zero, NULL, zero, Ordinal::three)</td>
<td>$[3] \omega_\omega$</td>
</tr>
<tr>
<td>af(omega, zero, NULL, omega)</td>
<td>ω_ω</td>
</tr>
<tr>
<td>af(Ordinal::two, omega1CK, cp(&one), zero, Ordinal::two)</td>
<td>$[2] \omega_{2,\omega_1}(1)$</td>
</tr>
<tr>
<td>af(omega, omega, cp(&one, &omega1CK, &zero, &zero), zero, one)</td>
<td>$[1] \omega_{\omega,\omega}(1, \omega_1, 0)$</td>
</tr>
</tbody>
</table>

Table 46: admisLevelFunctional C++ code examples
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfp</td>
<td><code>compareFiniteParams</code> compares its (\beta_i) to those in its argument</td>
</tr>
<tr>
<td>cmp</td>
<td><code>obj.compare(arg)</code> returns -1, 0 or 1 if (obj <, =) or (>) then arg</td>
</tr>
<tr>
<td>compareCom</td>
<td>does comparisons used by higher level routines (see Table 49)</td>
</tr>
<tr>
<td>(\delta_{ef})</td>
<td>effective (context dependent) value of (\delta)</td>
</tr>
<tr>
<td>diff</td>
<td>temporary value with <code>compare</code> result</td>
</tr>
<tr>
<td>dd</td>
<td><code>drillDown \eta</code> in ([\eta]) or ([[\eta]]) suffix</td>
</tr>
<tr>
<td>effCK</td>
<td>effectiveIndexCK returns (\kappa) adjusted for (\delta), (\eta) and context.</td>
</tr>
<tr>
<td>functionLevel</td>
<td>(\gamma) parameter in expressions 24 and 27</td>
</tr>
<tr>
<td>ignoreFactor</td>
<td>parameter to ignore factor in comparison</td>
</tr>
<tr>
<td>ignf</td>
<td><code>ignoreFactor</code> ignore factor and all but the first term</td>
</tr>
<tr>
<td>isDdE</td>
<td><code>isDrillDownEmbed</code> (\equiv) has ([[\eta]]) suffix</td>
</tr>
<tr>
<td>isZ</td>
<td><code>isZero</code> is value zero</td>
</tr>
<tr>
<td>maxParameter</td>
<td>largest parameter of class instance or <code>trm</code></td>
</tr>
<tr>
<td>maxParamFirstTerm</td>
<td>first term of largest parameter of <code>trm</code></td>
</tr>
<tr>
<td>parameterCompare</td>
<td>compare itself and its argument’s largest parameter and vice versa</td>
</tr>
<tr>
<td>this</td>
<td>pointer to <code>class</code> instance called from</td>
</tr>
<tr>
<td>trm</td>
<td>parameter comparing against</td>
</tr>
<tr>
<td>X</td>
<td>exit code (see Note 60 on page 84)</td>
</tr>
</tbody>
</table>

Table 47: Symbols used in `compare` tables 48 and 49

The function `compare` has four arguments.

- `const OrdinalImpl& embdIx` — the context for the base `class` object from which this `compare` originated.

- `const OrdinalImpl& termEmbdIx` — the context of the `CantorNormalElement` parameter of `compare`.

- `const CantorNormalElement& trm` — the term to be compared.

- `bool ignoreFactor` — an optional parameter that defaults to `false` and indicates that an integer `factor` is to be ignored in the comparison.

The original version of `compare`, without the context arguments, calls the routine with context parameters.

As with `compare` for `FiniteFuncOrdinals` and `IterFuncOrdinals` this function depends on the `getMaxParameter()` that returns the maximum value of all the parameters (except \(\eta\) and \(\delta\)) in expressions 25, 27 and 28.

The logic of `AdmisNormalElement::compare` with the above four parameters is summarized in tables 48 and 49. The latter is for `AdmisNormalElement::compareCom` which contains comparisons suitable for use in higher level routines. It is called by `compare` with identical parameters for suitable tests. Definitions used in these two tables are contained in Table 47.
See Table 47 for symbol definitions.
Comparisons use δ context for both operands.
Value is $\text{ord.cmp(trm)} : -1, 0$ or 1 if ord $<, =, >$ trm

<table>
<thead>
<tr>
<th>X</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>if (trm.codeLevel > admisCodeLevel) diff=-trm.cmp(*this)</td>
<td>diff</td>
</tr>
<tr>
<td></td>
<td>(trm.codeLevel < admisCodeLevel) applies to A2, A3 and A4</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>(trm.maxParameter==0)</td>
<td>1</td>
</tr>
<tr>
<td>A3</td>
<td>(maxParamFirstTerm \geq *this)</td>
<td>-1</td>
</tr>
<tr>
<td>A4</td>
<td>if neither the A2 or A3 condition is true</td>
<td>1</td>
</tr>
<tr>
<td>A5</td>
<td>(diff = parameterCompare(trm)) $\neq 0$</td>
<td>diff</td>
</tr>
<tr>
<td>C1</td>
<td>if none of the above apply diff = compareCom(trm)</td>
<td>diff</td>
</tr>
</tbody>
</table>

Table 48: AdmisNormalElement::compare summary

See Table 47 for symbol definitions.
Comparisons use δ context for both operands.
Value is $\text{ord.cmp(trm)} : -1, 0$ or 1 if ord $<, =, >$ trm

<table>
<thead>
<tr>
<th>X</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>$\delta_{ef} \neq 0 \land \text{trm}.\delta_{ef} \neq 0 \land ((\text{diff} = \delta_{ef}.\text{cmp}(\text{trm}.\delta_{ef}) \neq 0) $</td>
<td>diff</td>
</tr>
<tr>
<td>B2</td>
<td>(diff=effCk.cmp(trm.effCk)) $\neq 0$</td>
<td>diff</td>
</tr>
<tr>
<td>B3</td>
<td>(diff=indexCK.cmp(trm.indexCK)) $\neq 0$</td>
<td>diff</td>
</tr>
<tr>
<td>B4</td>
<td>(dd$\neq 0) \land (\text{trm}.dd$ $\neq 0) \land (\text{diff} = (\text{isDdE}-\text{trm}.\text{isDdE}) \neq 0) $</td>
<td>diff</td>
</tr>
<tr>
<td>B5</td>
<td>(dd$\neq 0) \land (\text{trm}.dd$ $\neq 0) \land (\text{diff} = \text{dd.cmp}(\text{trm}.dd) \neq 0) $</td>
<td>diff</td>
</tr>
<tr>
<td>B6</td>
<td>(diff=((dd$\neq 0) - (\text{trm}.dd$ $\neq 0))) \neq 0 $</td>
<td>diff</td>
</tr>
<tr>
<td>B7</td>
<td>(diff $= \gamma$.compare(trm.γ) $\neq 0$)</td>
<td>diff</td>
</tr>
<tr>
<td>B8</td>
<td>(diff $= \text{cfp}(\text{trm})$ $\neq 0$) \lor ignf</td>
<td>diff</td>
</tr>
<tr>
<td>B9</td>
<td>(diff $= \text{factor - trm.factor}$ $\neq 0$)</td>
<td>diff</td>
</tr>
</tbody>
</table>

Table 49: AdmisNormalElement::compareCom summary
11.2 limitElement member function

AdmisNormalElement::limitElement overrides IterFuncNormalElement::limitElement (see Section 8.2). It operates on a single term of the normal form expansion and does the bulk of the work. It takes a single integer parameter. Increasing values for the argument yield larger ordinal notations as output. In contrast to base class versions of this routine, in this version the union of the ordinals represented by the outputs for all integer inputs are not necessarily equal to the ordinal represented by the AdmisNormalElement class instance limitElement is called from. They are equal if the limitType of this instance of AdmisNormalElement is integerLimitType (see tables 40 and 50).

As usual Ordinal::limitElement does the work of operating on all but the last term of an Ordinal by copying all but the last term of the result unchanged from the input Ordinal. The last term is generated based on the last term of the Ordinal instance limitElement is called from.

AdmisNormalElement::limitElement calls drillDownLimitElement when the $[\eta]$ or $[[\eta]]$ suffix is not zero. These two routines each has a version, limitElementCom and drillDownLimitElementCom, invoked by the base routine and suitable for routines at higher codeLevels to use. The common routines (ending with Com) always create a result using createVirtualOrd or createVirtualOrdImpl. These virtual functions supply any unspecified parameters whenever the com routine is called from objects at higher codeLevels.

The four ...limitElement... routines are outlined in tables 52 to 55. The tables give the LimitTypeInfo enum assigned to each limit when a new Ordinal is created. The code that computes a limitElement often starts with a case statement on instances of this enum. Table 50 gives the definition of these enums. The type of limit is determined by the one or two least significant nonzero parameters and these conditions are described in this table. The symbols used in all four tables for the variations of ...limitElement... are defined in Table 51.

Corresponding to these four routines are tables 56 to 59 of examples with exit codes that match those in the corresponding descriptive tables. The matching exit codes are in columns X or UpX depending on whether the exit code is for the routine that directly generated the result or one that calls a lower level routine to do so. The exit codes are in the same alphabetical order in both the descriptive and example tables. Table 60 gives one example for every value of LimitTypeInfo used by limitElement. Some additional examples are shown in Tables 61 to 63.

One complication is addressed by routine leUse. This is required when κ is a limit and the least significant parameter. This routine selects an element from a sequence whose union is κ while insuring that this does not lead to a value less than δ. This selection must be chosen so that increasing inputs produce increasing outputs and the output is always less than the input. The same algorithm is used for limitOrd. See Note 72 on page 120 for a description of the algorithm. leUse is a virtual function so that routines that are using it (such as limitElementCom or limitOrdCom may be callable from higher levels.
<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Least significant nonzero parameters</th>
<th>limitType</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknownLimit</td>
<td>used internally</td>
<td></td>
</tr>
<tr>
<td>zeroLimit</td>
<td>the ordinal zero</td>
<td>nullLimitType</td>
</tr>
<tr>
<td>finiteLimit</td>
<td>a successor ordinals</td>
<td>nullLimitType</td>
</tr>
<tr>
<td>paramSucc</td>
<td>in ω^x is a successor</td>
<td>integerLimitType</td>
</tr>
</tbody>
</table>

The following is at code level cantorCodeLevel (Section 6) and above.

paramLimit	β_i is a limit	β_i.limitType
paramSuccZero	successor β_i followed by at least one zero	integerLimitType
paramsSucc	least significant β_i is successor	integerLimitType
paramNxtLimit	Limit β_i, zero or more zeros and successor.	β_i.limitType()

The following is at code level finiteFuncCodeLevel (Section 8) and above.

functionSucc	γ is successor and $\beta_i == 0.$	integerLimitType
functionNxtSucc	γ and a single β_i are successors.	integerLimitType
functionLimit	γ is a limit and $\beta_i == 0.$	γ.limitType
functionNxtLimit	γ is a limit and a single β_i is a successor.	γ.limitType

The following is at code level iterFuncCodeLevel (Section 9) and above.

drillDownLimit	η or $[\eta]$ suffix is a limit.	η.limitType
drillDownSucc	η is a successor $> 1.$	integerLimitType
drillDownSuccCKOne	η is a successor $> 1.$	integerLimitType
drillDownSuccEmbed	η is a successor.	integerLimitType
drillDownOne	$\eta == 1 \land (\kappa > 1)$.	integerLimitType
drillDownOneEmbed	$\eta == 1 \land (\kappa > 1)$.	integerLimitType
drillDownCKOne	$\eta == \kappa == 1$.	integerLimitType
indexCKLimit	κ is a limit and $\delta == 0.$	κ.limitType
indexCKsuccParam	κ and a single β are successors $\land \kappa \neq \delta$	integerLimitType
indexCKsuccParamEq	κ and a single β are successors $\land \kappa == \delta$	integerLimitType
indexCKsuccEmbed	κ is a successor and $\delta > 0$	indexCKtoLimitType
indexCKsuccUn	κ is a successor and $\delta == 0$	indexCKtoLimitType
indexCKLimitParamUn	κ is a limit and β_1 is a successor	κ.limitType
indexCKLimitEmbed	κ is limit and $\delta > 0$	κ.limitType

Table 50: LimitTypeInfo descriptions through admisCodeLevel
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{ck}</td>
<td>if $\kappa = \delta$ use $\delta - 1$</td>
</tr>
<tr>
<td>dRepl</td>
<td>copy ordinal called from replacing η parameter</td>
</tr>
<tr>
<td>IfNe</td>
<td>IterativeFunctionNormalElement see Section 9</td>
</tr>
<tr>
<td>isDdEmb</td>
<td>isDrillDownEmbed (true iff $[\eta]$ suffix is nonzero)</td>
</tr>
<tr>
<td>isLm</td>
<td>isLimit</td>
</tr>
<tr>
<td>isSc</td>
<td>isSuccessor</td>
</tr>
<tr>
<td>indexCKtoLimitType</td>
<td>computes limitType κ by adding 1 to κ if it is finite</td>
</tr>
<tr>
<td>le</td>
<td>limitElement (Table 52)</td>
</tr>
<tr>
<td>$\alpha.leUse(n)$</td>
<td>Compute a safe value for $le(n)$ and $lo(n)$ see Section 11.2</td>
</tr>
<tr>
<td>lSg</td>
<td>value of least significant nonzero β_i</td>
</tr>
<tr>
<td>lsx</td>
<td>index of least significant nonzero β_i</td>
</tr>
<tr>
<td>lo</td>
<td>limitOrd (Table 64)</td>
</tr>
<tr>
<td>lp1</td>
<td>limPlus 1 avoid fixed points by adding 1 if $\text{pseudoCodeLevel} > \text{cantorCodeLevel}$ (Section 8.3)</td>
</tr>
<tr>
<td>n1Sg</td>
<td>value of next to least significant nonzero β_i</td>
</tr>
<tr>
<td>n1sx</td>
<td>index of next to least significant nonzero β_i</td>
</tr>
<tr>
<td>rep1</td>
<td>replace1, rep1(i,val) replaces β_i with val in ord see Table 26</td>
</tr>
<tr>
<td>rep2</td>
<td>replace2, a two parameter version of rep1 see Table 26</td>
</tr>
<tr>
<td>Rtn x</td>
<td>x is return value</td>
</tr>
<tr>
<td>sz</td>
<td>number of β_i in expressions 24 and 27</td>
</tr>
<tr>
<td>this</td>
<td>pointer to class instance called from</td>
</tr>
<tr>
<td>X</td>
<td>exit code (Note 60 on page 84)</td>
</tr>
</tbody>
</table>

Table 51: Symbols used in limitElement Tables 52 to 55 and limitOrd Table 64
\(\alpha \) is a notation for one of expressions 24 to 28.

\[\omega_{\kappa,\gamma}(\beta_1, \beta_2, \ldots, \beta_m) \quad \omega_{\kappa,\eta}[\delta] \omega_{\kappa,\gamma}(\beta_1, \beta_2, \ldots, \beta_m) = \omega_{\kappa, \eta}[\delta] \]

See Table 51 for symbol definitions.

<table>
<thead>
<tr>
<th>X</th>
<th>Condition(s)</th>
<th>LimitTypeInfo</th>
<th>(\alpha.\le(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD</td>
<td>((\eta \neq 0))</td>
<td>drillDown*</td>
<td>drillDownLimitElement(n) See Table 54.</td>
</tr>
<tr>
<td>LEBBC</td>
<td>various conditions</td>
<td>many options</td>
<td>limitElementCom(n) See Table 53.</td>
</tr>
<tr>
<td>LECK</td>
<td>(\kappa == \delta \land) (sz == 1 \land (\gamma == 0) \land \beta_1.\isSc \land \kappa.\isSc)</td>
<td>indexCKsuccParamEq (b = [\kappa] \omega_{\kappa}(\beta_1 - 1)); for(i=1;i<n;i++) (b=\omega_{\kappa-1,\ell_1}); Rtn b</td>
<td></td>
</tr>
<tr>
<td>LEDC</td>
<td>(sz == 0 \land (\gamma == 0) \land \kappa.\isSc \land \delta == 0)</td>
<td>indexCKsuccUn (\omega_{\kappa}[n])</td>
<td></td>
</tr>
</tbody>
</table>

See Table 56 for examples

| Table 52: AdmisNormalElement::limitElement cases |
|----|----------------------|--------------------------------------|---------------------|
| X | Condition(s) | LimitTypeInfo | \(\alpha.\le(n) \) |
| LCAF | \(\gamma.\isSc \lor sz > 1 \lor ((\gamma > 0) \land (sz == 1))\) | param* function* | IterFuncNormalElement::limitElementCom(n) See Section 9.2 |
| LCBL | \(\kappa.\isLm \land (\gamma == 0) \land (\delta == 0)\) | indexCKlimit | \(\omega_{\kappa.\le(n)}[\ell_1]\) |
| LCCI | \(sz == 1 \land (\gamma == 0) \land \beta_1.\isSc \land \kappa == 1 \land \delta == 0\) | indexCKsuccParam | \(b = [\delta] \omega_{\kappa}(\beta_1 - 1)\); for(i=1;i<n;i++) \(b=\varphi_{\beta_1,\ell_1}(\beta_1 - 1)\); rtn b |
| LCDP | \(sz == 1 \land (\gamma == 0) \land \beta_1.\isSc \land \kappa > 1 \land \delta > \kappa\) | indexCKsuccParam | \(b = [\delta] \omega_{\kappa}(\beta_1 - 1)\); for(i=1;i<n;i++) \(b=\omega_{\kappa-1,\ell_1}(\beta_1 - 1)\); rtn b |
| LEDE | \(\kappa.\isSc \land (\delta > 0)\) | indexCKsuccEmbed | \([\delta] \omega_{\kappa}[n]\) |
| LEEE | \(\kappa.\isLm \land (\delta > 0)\) | indexCKlimitEmbed | \(\kappa' = incLm(\delta, n)\); Rtn \([\delta] \omega_{\kappa'}\) |
| LCEL | \(sz == 1 \land (\gamma == 0) \land \beta_1.\isSc \land \kappa.\isLm \land \delta.\isSc\) | indexCKlimitParamUn \(l = \kappa.\le(n)\); \([\delta] \omega_{\leUse(1) \omega_{\kappa}(\beta_1 - 1)}[\ell_1]\) |

See Table 57 for examples

| Table 53: AdmisNormalElement::limitElementCom cases |
\(\alpha \) is a notation from expressions 25, 26 or 28.
\[\alpha = \omega_\eta \]
\[\alpha = [\delta] \omega_\eta \]
\[[\delta] \omega_\eta \]

The \(\delta \) parameter is unchanged and not displayed if optional.

See Table 51 for symbol definitions.

<table>
<thead>
<tr>
<th>X</th>
<th>Condition(s)</th>
<th>LimitTypeInfo</th>
<th>(\alpha).le(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDAC</td>
<td>(\eta.isOne \land \kappa.isOne)</td>
<td>drillDownLimit</td>
<td>drillDownLimit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownSucc</td>
<td>drillDownSuccEmbed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOne</td>
<td>drillDownOneEmbed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>drillDownLimitElementCom(n)</td>
</tr>
<tr>
<td>DDBO</td>
<td>(\eta.isSc \land \eta > 1) & (\kappa == 1)</td>
<td>drillDownSuccCKOne</td>
<td>for(i=1;i<n;i++)b=\varphi_{b.lp1};Rtn b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Table 58 for examples

Table 54: AdmisNormalElement::drillDownLimitElement cases

<table>
<thead>
<tr>
<th>X</th>
<th>Condition(s)</th>
<th>LimitTypeInfo</th>
<th>(\alpha).drillDownLimitElementCom(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAL</td>
<td>(\eta.isLm)</td>
<td>drillDownLimit</td>
<td>(\omega_\eta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownSucc</td>
<td>([\delta] \omega_\eta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOne</td>
<td>b=\omega; for (i=1;i<n;i++)b=\varphi_b.lp1;Rtn b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOneEmbed</td>
<td>b=[\delta] \omega_b;Rtn b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownSuccEmbed</td>
<td>b=[\delta] \omega_b;Rtn b</td>
</tr>
<tr>
<td>DCCS</td>
<td>(\eta.isSc > 1 \land \eta.isSc)</td>
<td>drillDownSuccEmbed</td>
<td>for(i=1;i<n;i++)b=\varphi_{b.lp1};Rtn b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCO</td>
<td>(\eta == 1) \land \eta.brDdEmb \land (\kappa > 1)</td>
<td>drillDownOne</td>
<td>b=[\delta] \omega_{\kappa -1} ; for(i=1;i<n;i++)b=[\delta] \omega_{\kappa -1,b.lp1}; Rtn b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCES</td>
<td>(\eta.brDdEmb \land (\kappa > 1))</td>
<td>drillDownOne</td>
<td>b=\omega_\eta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Table 59 for examples

Table 55: AdmisNormalElement::drillDownLimitElementCom cases
X is an exit code (see Table 52). **UpX** is a higher level exit code from a calling routine.

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>Ordinal</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDBO</td>
<td>LEAD</td>
<td>ω₁[1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCBL</td>
<td>LEBC</td>
<td>ω₁</td>
<td>ω₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCEL</td>
<td>LEBC</td>
<td>ω₁(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCDP</td>
<td>LEBC</td>
<td>ω₁(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCEL</td>
<td>LEBC</td>
<td>ω₁(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LECK</td>
<td>LEBC</td>
<td>ω₁(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LECK</td>
<td>LEBC</td>
<td>[ω + 5]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDC</td>
<td>LEBC</td>
<td>ω₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDC</td>
<td>LEBC</td>
<td>ω₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDE</td>
<td>LEBC</td>
<td>ω₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEEE</td>
<td>LEBC</td>
<td>ω₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEEE</td>
<td>LEBC</td>
<td>ω₁</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 56: `AdmisNormalElement::limitElement` exit codes
X is an exit code (see Table 53). UpX is a higher level exit code from a calling routine.

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>Ordinal</th>
<th>limitElement</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>LCAF</td>
<td>(\omega_{12,4}(1))</td>
<td>(\omega_{12,4} + 1)</td>
</tr>
<tr>
<td>II</td>
<td>LCAF</td>
<td>([3]\omega_{12,4}(1))</td>
<td>([3]\omega_{12,4} + 1)</td>
</tr>
<tr>
<td>LCBL</td>
<td>LEBC</td>
<td>(\omega_1)</td>
<td>(\omega_2)</td>
</tr>
<tr>
<td>LCBL</td>
<td>LEBC</td>
<td>(\omega_{1\omega_1+1})</td>
<td>(\omega_{1\omega_2+1})</td>
</tr>
<tr>
<td>LCCI</td>
<td>LEBC</td>
<td>(\omega_{1(12)})</td>
<td>(\omega_{1(11)})</td>
</tr>
<tr>
<td>LCDP</td>
<td>LEBC</td>
<td>(\omega_{5(12)})</td>
<td>(\omega_{5(11)})</td>
</tr>
<tr>
<td>LCDP</td>
<td>LEBC</td>
<td>([2]\omega_{5(12)})</td>
<td>([2]\omega_{5(11)})</td>
</tr>
<tr>
<td>LCEL</td>
<td>LEBC</td>
<td>(\omega_{5(12)})</td>
<td>(\omega_{5(11)})</td>
</tr>
<tr>
<td>LCEL</td>
<td>LEBC</td>
<td>([5]\omega_{6,5}\omega_{5(11)}+1)</td>
<td>([5]\omega_{7,[5]\omega_{5(11)}+1})</td>
</tr>
</tbody>
</table>

Table 57: AdmisNormalElement::limitElementCom exit codes

X is an exit code (see Table 54). UpX is a higher level exit code from a calling routine.

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>Ordinal</th>
<th>limitElement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCDO</td>
<td>DDAC</td>
<td>(\omega_{2 \omega_1})</td>
<td>(\omega_{1,\omega_1+1})</td>
</tr>
<tr>
<td>DCAL</td>
<td>DDAC</td>
<td>(\omega_{2 \omega_1})</td>
<td>(\omega_{1,\omega_2+1})</td>
</tr>
<tr>
<td>LEAD</td>
<td>LEAD</td>
<td>(\omega_{1 \omega_1+1})</td>
<td>(\omega_{1 \omega_2+1})</td>
</tr>
<tr>
<td>DCCS</td>
<td>LEAD</td>
<td>(\omega_{1 \omega_1+1})</td>
<td>(\omega_{1 \omega_2+1})</td>
</tr>
<tr>
<td>DDPO</td>
<td>LEAD</td>
<td>(\omega_{1 \omega_1+1})</td>
<td>(\omega_{1 \omega_2+1})</td>
</tr>
<tr>
<td>DDCO</td>
<td>LEAD</td>
<td>(\omega_{1 \omega_1+1})</td>
<td>(\omega_{1 \omega_2+1})</td>
</tr>
<tr>
<td>DDCO</td>
<td>LEAD</td>
<td>(\omega_{1 \omega_1+1})</td>
<td>(\omega_{1 \omega_2+1})</td>
</tr>
</tbody>
</table>

Table 58: AdmisNormalElement::drillDownLimitElement exit codes
Table 59: `AdmisNormalElement::drillDownLimitElementCom` exit codes
<table>
<thead>
<tr>
<th>limitElement</th>
<th>limitElement</th>
<th>limitElement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LimitTypeInfo</td>
<td>Ordinal</td>
<td>1</td>
</tr>
</tbody>
</table>

The following is at code level `cantorCodeLevel` (Section 6) and above.

<table>
<thead>
<tr>
<th>paramSucc</th>
<th>$\omega^{\omega+12}$</th>
<th>$\omega^{\omega+11}$</th>
</tr>
</thead>
</table>

The following is at code level `finiteFuncCodeLevel` (Section 8) and above.

<table>
<thead>
<tr>
<th>paramLimit</th>
<th>$\varphi(\omega,0)$</th>
<th>ε_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>paramSuccZero</td>
<td>$\varphi(\omega+12,0,0)$</td>
<td>$\varphi(\omega+11,1,0)$</td>
</tr>
<tr>
<td>paramSucc</td>
<td>$\varphi(\omega+2.5,3)$</td>
<td>$\varphi(\omega+2.5,2)$</td>
</tr>
<tr>
<td>paramNxtLimit</td>
<td>$\varphi(\varepsilon_0,0,0,33)$</td>
<td>$\varphi(\omega,\varphi(\varepsilon_0,0,0,32)+1,0,33)$</td>
</tr>
</tbody>
</table>

The following is at code level `iterFuncCodeLevel` (Section 9) and above.

<table>
<thead>
<tr>
<th>functionSucc</th>
<th>φ_{11}</th>
<th>$\varphi_{10}(\varphi_{10}+1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>functionNxtSucc</td>
<td>$\varphi_{5}(4)$</td>
<td>$\varphi_{5}(3)+1$</td>
</tr>
<tr>
<td>functionNxtLimit</td>
<td>$\varphi_{5}(4,0,0)$</td>
<td>$\varphi_{5}(3,1,0)+1$</td>
</tr>
</tbody>
</table>

The following is at code level `admisCodeLevel` (Section 11) and above.

<table>
<thead>
<tr>
<th>drillDownLimit</th>
<th>$2\omega_3[\omega]$</th>
<th>$2\omega_3[1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>drillDownSucc</td>
<td>$2\omega_3[5]$</td>
<td>$2\omega_3[4]$</td>
</tr>
<tr>
<td>drillDownSuccCKOne</td>
<td>ω_2</td>
<td>ω_1</td>
</tr>
<tr>
<td>drillDownSuccEmbed</td>
<td>$[3]\omega_5[7]$</td>
<td>$[3]\omega_5[6]$</td>
</tr>
<tr>
<td>drillDownOne</td>
<td>$[3]\omega_5[1]$</td>
<td>$[3]\omega_5[6]$</td>
</tr>
<tr>
<td>drillDownOneEmbed</td>
<td>$[3]\omega_5[1]$</td>
<td>$[3]\omega_5[6]$</td>
</tr>
<tr>
<td>drillDownCKOne</td>
<td>$\omega_1[1]$</td>
<td>ω_1</td>
</tr>
<tr>
<td>indexCKLimit</td>
<td>$\omega_1[1]$</td>
<td>ω_1</td>
</tr>
<tr>
<td>indexCKsucParam</td>
<td>$[3]\omega_1[7]$</td>
<td>$[3]\omega_1[6]$</td>
</tr>
<tr>
<td>indexCKsucParamEq</td>
<td>$[12]\omega_1[7]$</td>
<td>$[12]\omega_1[6]$</td>
</tr>
<tr>
<td>indexCKsucEmbed</td>
<td>$[2]\omega_2$</td>
<td>$[2]\omega_2[1]$</td>
</tr>
<tr>
<td>indexCKsucUn</td>
<td>$\omega_1[6]$</td>
<td>$\omega_1[6]$</td>
</tr>
<tr>
<td>indexCKLimitParamUn</td>
<td>$[\omega^2 + 1][\omega^2]$</td>
<td>$[\omega^2 + 1][\omega^2 + 1]$</td>
</tr>
<tr>
<td>indexCKLimitEmbed</td>
<td>$[12][\omega^2]$</td>
<td>$[12][\omega^2]$</td>
</tr>
</tbody>
</table>

Table 60: `limitElement` and `LimitTypeInfo` examples through `admisCodeLevel`
<table>
<thead>
<tr>
<th>AdmisLevOrdinal</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>(\omega_1)</td>
<td>(\omega_2)</td>
<td>(\omega_3)</td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>(\omega_1[1])</td>
<td>(\omega_2[2])</td>
<td>(\omega_1[3])</td>
</tr>
<tr>
<td>(\varphi(\omega_1,1,0,0))</td>
<td>(\varphi(\omega_1,0,1,0))</td>
<td>(\varphi(\omega_1,0,\varphi(\omega_1,0,1,0)+1,0))</td>
<td>(\varphi(\omega_1,0,\varphi(\omega_1,0,\varphi(\omega_1,0,1,0)+1,0)+1,0))</td>
</tr>
<tr>
<td>(\varphi(\omega_1+1,1))</td>
<td>(\varphi(\omega_1+1,0))</td>
<td>(\varphi(\omega_1+1,\varphi(\omega_1+1,0)+1))</td>
<td>(\varphi(\omega_1,\varphi(\omega_1,\varphi(\omega_1+1,0)+1)+1))</td>
</tr>
<tr>
<td>(\omega_1[1])</td>
<td>(\omega)</td>
<td>(\varphi\omega)</td>
<td>(\varphi_{\omega+1})</td>
</tr>
<tr>
<td>(\omega_1[2])</td>
<td>(\omega_1[1])</td>
<td>(\varphi\omega_1[1]+1)</td>
<td>(\varphi_{\omega_1[1]+1})</td>
</tr>
<tr>
<td>(\omega_1[\omega])</td>
<td>(\omega_1[1])</td>
<td>(\omega_2[2])</td>
<td>(\omega_1[3])</td>
</tr>
<tr>
<td>(\omega_2[\omega])</td>
<td>(\omega_2[1])</td>
<td>(\omega_2[1])</td>
<td>(\omega_2[3])</td>
</tr>
<tr>
<td>(\omega_3[\omega_1])</td>
<td>(\omega_2[\omega_1[1]])</td>
<td>(\omega_2[\omega_2[2]])</td>
<td>(\omega_2[\omega_3[3]])</td>
</tr>
<tr>
<td>(\omega(\omega_4))</td>
<td>(\omega_3[1] + \omega_1[1])</td>
<td>(\omega_3[2] + \omega_1[1])</td>
<td>(\omega_3[3] + \omega_1[3])</td>
</tr>
<tr>
<td>(\omega(\omega_5))</td>
<td>(\omega_3[1] + \omega_1[1])</td>
<td>(\omega_3[2] + \omega_1[2])</td>
<td>(\omega_3[3] + \omega_1[3])</td>
</tr>
<tr>
<td>(\omega_1(1,1,1))</td>
<td>(\omega_1(1,1,0))</td>
<td>(\omega_1(1,0,0))</td>
<td>(\omega_1(1,0,\omega_1(1,0,0)+1))</td>
</tr>
<tr>
<td>(\omega_1(2,0,1))</td>
<td>(\omega_1(2,0,0))</td>
<td>(\omega_1(2,0,\omega_1(2,0,0)+1,1))</td>
<td>(\omega_1(2,0,\omega_1(2,0,0)+1,1)+1,1)</td>
</tr>
<tr>
<td>(\omega_1(\varepsilon_0,1,0))</td>
<td>(\omega_1(\varepsilon_0,0,1))</td>
<td>(\omega_1(\varepsilon_0,0,\omega_1(\varepsilon_0,0,1)+1))</td>
<td>(\omega_1(\varepsilon_0,0,\omega_1(\varepsilon_0,0,1)+1)+1))</td>
</tr>
</tbody>
</table>

Table 61: AdmisLevOrdinal::limitElement examples part 1.
<table>
<thead>
<tr>
<th>AdmisLevOrdinal</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_{1,1}(1)$</td>
<td>$\omega_{1,1} + 1$</td>
<td>$\omega_1(\omega_{1,1} + 1,0)$</td>
<td>$\omega_1(\omega_{1,1} + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{2,1}(1)$</td>
<td>$\omega_{2,1} + 1$</td>
<td>$\omega_2(\omega_{2,1} + 1,0)$</td>
<td>$\omega_2(\omega_{2,1} + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3}(1)$</td>
<td>$\omega_{1,3} + 1$</td>
<td>$\omega_{1,2}(\omega_{1,3} + 1,0)$</td>
<td>$\omega_{1,2}(\omega_{1,3} + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3}(5)$</td>
<td>$\omega_{1,3}(4) + 1$</td>
<td>$\omega_{1,2}(\omega_{1,3}(4) + 1,0)$</td>
<td>$\omega_{1,2}(\omega_{1,3}(4) + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,1}(10)$</td>
<td>$\omega_{1,1}(1)$</td>
<td>$\omega_{1,1}(\omega_{1,1}(1) + 1,0)$</td>
<td>$\omega_{1,1}(\omega_{1,1}(1) + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3}(10)$</td>
<td>$\omega_{1,3}(1)$</td>
<td>$\omega_{1,3}(\omega_{1,3}(1) + 1,0)$</td>
<td>$\omega_{1,3}(\omega_{1,3}(1) + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3}(5,0)$</td>
<td>$\omega_{1,3}(4,1)$</td>
<td>$\omega_{1,3}(4,\omega_{1,3}(4,1) + 1)$</td>
<td>$\omega_{1,3}(4,\omega_{1,3}(4,\omega_{1,3}(4,1) + 1) + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,1}(1,0,0)$</td>
<td>$\omega_{1,1}(1,0)$</td>
<td>$\omega_{1,1}(\omega_{1,1}(1,0) + 1,0)$</td>
<td>$\omega_{1,1}(\omega_{1,1}(1,0) + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3}(1,0)$</td>
<td>$\omega_{1,3}(1,0)$</td>
<td>$\omega_{1,3}(\omega_{1,3}(1,0) + 1,0)$</td>
<td>$\omega_{1,3}(\omega_{1,3}(1,0) + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3}(2,0,0)$</td>
<td>$\omega_{1,3}(1,1,0)$</td>
<td>$\omega_{1,3}(\omega_{1,3}(1,1,0) + 1,0)$</td>
<td>$\omega_{1,3}(\omega_{1,3}(1,1,0) + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3,0}(1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0} + 1,0)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0} + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3,0}+1(1)$</td>
<td>$\omega_{1,3,0}+1(1)$</td>
<td>$\omega_{1,3,0}+1(1)$</td>
<td>$\omega_{1,3,0}+1(1)$</td>
</tr>
<tr>
<td>$\omega_{1,3,0}+\omega(3)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0}+\omega(2) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0}+\omega(2) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0}+\omega(2) + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,1}(1)$</td>
<td>$\omega_{1,1}(1)$</td>
<td>$\omega_{1,1}(\omega_{1,1} + 1,0)$</td>
<td>$\omega_{1,1}(\omega_{1,1} + 1,0,0)$</td>
</tr>
<tr>
<td>$\omega_{1,3,0}(1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,3,0}+\omega(1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0}+\omega(2) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0}+\omega(2) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,3,0}+\omega(2) + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(1)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(5)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(10)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5}(4) + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(2)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(3)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(4)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(5)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(6)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(7)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(8)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(9)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
<tr>
<td>$\omega_{1,5}(10)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
<td>$\omega_{1,0}(\omega_{1,5} + 1)$</td>
</tr>
</tbody>
</table>

Table 62: AdmisLevOrdinal::limitElement examples part 2.
<table>
<thead>
<tr>
<th>AdmisLevOrdinal</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω^ω1+1</td>
<td>ω_1</td>
<td>ω_1</td>
<td>ω_1</td>
</tr>
<tr>
<td>(ω_1^2)</td>
<td>ω_1 + ω_1[1]</td>
<td>ω_1 + ω_1[2]</td>
<td>ω_1 + ω_1[3]</td>
</tr>
<tr>
<td>ω_ξ_0(1)</td>
<td>ω_ω_ω_ξ_0 + 1</td>
<td>ω_ω_ω_ω_ξ_0 + 1</td>
<td>ω_ω_ω_ω_ω_ξ_0 + 1</td>
</tr>
<tr>
<td>ω_ξ_0(2)</td>
<td>ω_ω_ω_ξ_0(1) + 1</td>
<td>ω_ω_ω_ω_ξ_0(1) + 1</td>
<td>ω_ω_ω_ω_ω_ω_ξ_0(1) + 1</td>
</tr>
<tr>
<td>ω_ξ_0(ω)</td>
<td>ω_ω_ω_ξ_0(1)</td>
<td>ω_ξ_0(2)</td>
<td>ω_ξ_0(3)</td>
</tr>
<tr>
<td>(ω + 1)</td>
<td>ω_ξ_0</td>
<td>(ω + 1)</td>
<td>ω_ω_ω_ω_ω_ω + 1</td>
</tr>
<tr>
<td>(ω + 1)</td>
<td>ω_ξ_0 + 3</td>
<td>(ω + 1)</td>
<td>ω_ω_ω_ω_ω_ω + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 1(1)</td>
<td>ω_ξ_0 + 1</td>
<td>ω_ξ_0 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 1 + 1</td>
<td>ω_ξ_0 + 1 + 1</td>
<td>ω_ξ_0 + 1 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 2 + 1</td>
<td>ω_ξ_0 + 2 + 1</td>
<td>ω_ξ_0 + 2 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 3 + 1</td>
<td>ω_ξ_0 + 3 + 1</td>
<td>ω_ξ_0 + 3 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 4 + 1</td>
<td>ω_ξ_0 + 4 + 1</td>
<td>ω_ξ_0 + 4 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 5 + 1</td>
<td>ω_ξ_0 + 5 + 1</td>
<td>ω_ξ_0 + 5 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 6 + 1</td>
<td>ω_ξ_0 + 6 + 1</td>
<td>ω_ξ_0 + 6 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 7 + 1</td>
<td>ω_ξ_0 + 7 + 1</td>
<td>ω_ξ_0 + 7 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 8 + 1</td>
<td>ω_ξ_0 + 8 + 1</td>
<td>ω_ξ_0 + 8 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 9 + 1</td>
<td>ω_ξ_0 + 9 + 1</td>
<td>ω_ξ_0 + 9 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 10 + 1</td>
<td>ω_ξ_0 + 10 + 1</td>
<td>ω_ξ_0 + 10 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 11 + 1</td>
<td>ω_ξ_0 + 11 + 1</td>
<td>ω_ξ_0 + 11 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 12 + 1</td>
<td>ω_ξ_0 + 12 + 1</td>
<td>ω_ξ_0 + 12 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 13 + 1</td>
<td>ω_ξ_0 + 13 + 1</td>
<td>ω_ξ_0 + 13 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 14 + 1</td>
<td>ω_ξ_0 + 14 + 1</td>
<td>ω_ξ_0 + 14 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 15 + 1</td>
<td>ω_ξ_0 + 15 + 1</td>
<td>ω_ξ_0 + 15 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 16 + 1</td>
<td>ω_ξ_0 + 16 + 1</td>
<td>ω_ξ_0 + 16 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 17 + 1</td>
<td>ω_ξ_0 + 17 + 1</td>
<td>ω_ξ_0 + 17 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 18 + 1</td>
<td>ω_ξ_0 + 18 + 1</td>
<td>ω_ξ_0 + 18 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 19 + 1</td>
<td>ω_ξ_0 + 19 + 1</td>
<td>ω_ξ_0 + 19 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 20 + 1</td>
<td>ω_ξ_0 + 20 + 1</td>
<td>ω_ξ_0 + 20 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 21 + 1</td>
<td>ω_ξ_0 + 21 + 1</td>
<td>ω_ξ_0 + 21 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 22 + 1</td>
<td>ω_ξ_0 + 22 + 1</td>
<td>ω_ξ_0 + 22 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
<tr>
<td>ω_ξ_0 + 23 + 1</td>
<td>ω_ξ_0 + 23 + 1</td>
<td>ω_ξ_0 + 23 + 1</td>
<td>ω_ω_ω_ω_ω_ω_ω + 1 + 1</td>
</tr>
</tbody>
</table>

Table 63: AdmisLevOrdinal::limitElement examples part 3.
11.3 isValidLimitOrdParam member function

For admissible level ordinals, limitElement must be supplemented with limitOrd that accepts Ordinals up to a given size as input as discussed in Section 10.3. Ordinal member function isValidLimitOrdParam returns true if its single argument is a valid parameter to limitOrd when called from the object isValidLimitOrdParam is called from. (Although this is an Ordinal member function it is only required at classes AdmisLevOrdinal and higher.) It uses limitType and maxLimitType as discussed below if no [[δ]] prefix is involved. Otherwise it must also use embedType and the relative sizes of the object it is called from and its parameter to determine if it is a legal argument. The problem is that [[δ]]ωδ (with δ a successor) creates an ordinal < ωδ that still must accept smaller ordinals such as [[δ]]ωδ[1] as a parameter. ([[δ]]ωδ[1].maxLimitType == [[δ]]ωδ.limitType.) When limitType of the object limitOrd is called from equals maxLimitType of the argument and embedType is non null the argument is valid if it is less than the object limitOrd is called from.

11.4 limitInfo, limitType and embedType member functions

Ordinarily these routines are used indirectly by calling isValidLimitOrdParam described in the previous section. They are introduced in this class because they are not used in a system with only notations for base classes. However they are defined in these base classes. Only limitInfo has a version for class AdmisNormalElement. It does the bulk of the work computing the limitType value and the enum LimitTypeInfo used in routines limitElement and limitOrd. The algorithm for this is outlined in see Table 50, for the description through admisCodeLevel and Table 68 for all classes discussed in this document along with examples in Table 69. Clicking on an entry in the LimitInfoType will take you do the example line in the second table.

limitType and embedType both return an OrdinalImpl. The limitType of an ordinal is the limitType of the least significant term.

11.5 maxLimitType member function

maxLimitType is the maximum of limitType for all ordinals ≤ the ordinal represented by the object maxLimitType is called from. AdmisNormalElement::maxLimitTypes calls IterFuncNormalElement::maxLimitType for the maximum of all parameters except those unique to class AdmisLevOrdinal. Next, the type of ωκ is computed and the maximum of these two values is taken. Finally, the effect of the δ and η parameters are taken into account. δ puts an upper bound on maxLimitType. If δ is zero a nonzero η reduces the value of maxLimitType by 1 if it is a successor.

11.6 limitOrd member function

AdmisNormalElement::limitOrd extends the idea of limitElement as indirectly enumerating all smaller ordinals. It does this in a limited way for ordinals that are not recursive by using ordinal notations (including those yet to be defined) as arguments in place of the integer arguments of limitElement. By defining recursive operations on an
incomplete domain we can retain something of the flavor of limitElement since: \(\alpha = \bigcup_\beta : \alpha.\text{isValidLimitOrdParam}(\beta) \alpha.\text{limitOrd}(\beta) \) and \(\alpha.\text{isValidLimitOrdParam}(\beta) \rightarrow \beta < \alpha \).

Table 64 gives the logic of AdmisNormalElement::limitOrd along with the type of limit designated by LimitInfoType and the exit code used in debugging. Table 65 gives examples for each exit code. Table 66 gives values of enum LimitInfoType used by limitOrd in a case statement along with examples. Usually limitOrd is simpler than limitElement because it adds its argument as a \([\eta]\) or \([[[\eta]]]\) parameter to an existing parameter. Sometimes it must also decrement a successor ordinal and incorporate this in the result. The selection of which parameter(s) to modify is largely determined by a case statement on LimitInfoType. There are some additional examples in Table 67.

limitOrd is defined for base classes down to Ordinal because instances of those classes with appropriate parameters can have limitTypes greater than integerLimitType. For example the expression \(\omega^{\omega_1 \times 2} \) defines an Ordinal instance with \(\text{limitType} > \text{integerLimitType} \).

One complication occurs when \(\kappa \) is the least significant non zero parameter and \(\delta \) is nonzero. Since \(\delta \) cannot be a limit it must be less than \(\kappa \) in this case. The value returned by limitOrd must not have \(\kappa > \delta \). This is insured with routine leUse72 which in turn calls AdmisNormalElement::increasingLimit73.

72AdmisNormalElement::leUse(lo) is called with \(lo = \kappa.\text{limitOrd}(ord) \) as an inargument. It calls increasingLimit (see Note 73) to insure a valid output that will be strictly increasing for increasing inputs.

73AdmisNormalElement::increasingLimit(effDelta, limitElt) computes a value \(\geq \text{effDelta} \) that will be strictly increasing for increasing values of limitElt. This insures limitElement and limitOrd will not violate the \(\delta \) constraint on \(\kappa \) and will produce increasing outputs from increasing inputs. Terms may be added to the output from effDelta to insure this. All terms in effDelta that are in limitElt or less than terms in limitElt excluding the last term in limitElt are ignored. The remainder are added to limitElt.
\(\alpha \) is a notation from expressions 24 to 28.

\[
\alpha = \omega_{\kappa, \gamma} (\beta_1, \beta_2, \ldots, \beta_m) \quad \alpha = \omega_{\kappa}[\eta] \quad \alpha = [\delta] \omega_{\kappa}[\eta] \quad \alpha = [\delta] \omega_{\kappa, \gamma} (\beta_1, \beta_2, \ldots, \beta_m)
\]

See Table 51 for symbol definitions.

<table>
<thead>
<tr>
<th>X</th>
<th>Condition(s)</th>
<th>Info</th>
<th>(\alpha.\text{limitOrd}(\zeta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOA</td>
<td>(\eta.\text{isLm})</td>
<td>drillDownLimit</td>
<td>(\omega_{\kappa}[\eta.\text{lo}(\zeta)]) or ([\delta] \omega_{\kappa}[\eta.\text{lo}(\zeta)])</td>
</tr>
<tr>
<td>LOB</td>
<td>least significant (\beta_i) or (\gamma) is limit</td>
<td>paramLimit, paramNxtLimit, functionLimit, functionNxtLimit</td>
<td>(\alpha.\text{IfNe}.\text{lo}(\zeta))</td>
</tr>
<tr>
<td>LOC</td>
<td>(sz==0) & (\gamma == 0) & (\kappa.\text{isLm})</td>
<td>indexCKlimit</td>
<td>(\omega_{\kappa}.\text{lo}(\zeta))</td>
</tr>
<tr>
<td>LOD</td>
<td>(sz==0) & (\gamma == 0) & (\delta.\text{isSc}) & (\kappa.\text{isLm})</td>
<td>indexCKlimitEmbed</td>
<td>([\delta] \omega_{\text{leUse}}[\text{lo}(\zeta)])</td>
</tr>
<tr>
<td>LOE</td>
<td>(sz==1) & (\gamma == 0) & (\beta_1.\text{isSc}) & (\kappa.\text{isLm}) & (\delta.\text{isSc})</td>
<td>indexCKlimitParamUn</td>
<td>(1 = \kappa.\text{lo}(\zeta); \quad [\delta] \omega_{\text{leUse}}(1), \omega_{\kappa}(\beta_1-1).\text{lp1})</td>
</tr>
<tr>
<td>LOF</td>
<td>(sz==0) & (\gamma == 0) & (\kappa.\text{isSc}) & (\delta.\text{isSc})</td>
<td>indexCKsuccEmbed</td>
<td>([\delta] \omega_{\kappa}[\zeta])</td>
</tr>
<tr>
<td>LOF</td>
<td>(sz==0) & (\gamma == 0) & (\kappa.\text{isSc}) & (\delta == 0)</td>
<td>indexCKsuccUn</td>
<td>(\omega_{\kappa}[\zeta])</td>
</tr>
</tbody>
</table>

Table 64: AdmisNormalElement::limitOrdCom cases
UpX is a higher level exit code from a calling routine.

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>Ordinal</th>
<th>limitOrd</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOA</td>
<td>ω₁²[ω₁]</td>
<td>ω₁²[ω₁ + 5]</td>
<td>ω₁²[ω₁ + 5] + 12</td>
</tr>
<tr>
<td>OFB-LOB</td>
<td>[ω + 3],ω₁²1</td>
<td>[ω + 3],ω₁²[1](ω₁ + 5) + 1</td>
<td>[ω + 3],ω₁²[1](ω₁ + 5) + 12</td>
</tr>
<tr>
<td>OFA-LOB</td>
<td>ω₁(ω₁)</td>
<td>ω₁(ω₁ + 5) + 1,ω₁ + 1</td>
<td>ω₁(ω₁ + 5) + 1,ω₁ + 1</td>
</tr>
<tr>
<td>FOB-LOB</td>
<td>[5],ω₁,ω₇</td>
<td>5,ω₁,ω₁ + 5,ω₁ + 1</td>
<td>5,ω₁,ω₁ + 5,ω₁ + 1</td>
</tr>
<tr>
<td>FOC-LOB</td>
<td>ω₁²[ω₁ + 1]</td>
<td>ω₁²[ω₁ + 5] + 1,ω₁ + 1</td>
<td>ω₁²[ω₁ + 5] + 1,ω₁ + 1</td>
</tr>
<tr>
<td>LOC</td>
<td>ω₁²[ω₁ + 12]</td>
<td>ω₁²[ω₁ + 12] + 1,ω₁ + 5 + 12</td>
<td>ω₁²[ω₁ + 12] + 1,ω₁ + 5 + 12</td>
</tr>
<tr>
<td>LOD</td>
<td>[ω + 3],ω₁²[12]</td>
<td>[ω + 3],ω₁²[12] + ω₁ + 5 + 12</td>
<td>[ω + 3],ω₁²[12] + ω₁ + 5 + 12</td>
</tr>
<tr>
<td>LOE</td>
<td>[19],ω₁²[12]</td>
<td>[19],ω₁²[12] + 1,ω₁ + 5,ω₁ + 12</td>
<td>[19],ω₁²[12] + 1,ω₁ + 5,ω₁ + 12</td>
</tr>
<tr>
<td>LOF</td>
<td>[ω + 15],ω₁²[12]</td>
<td>[ω + 15],ω₁²[12] + ω₁ + 5 + 12</td>
<td>[ω + 15],ω₁²[12] + ω₁ + 5 + 12</td>
</tr>
</tbody>
</table>

Table 65: AdmisNormalElement::limitOrdCom exit codes
\[\beta_i \text{ defined in: } 23, 24, 27, \gamma \text{ defined in: } 23, 24, 27, \eta \text{ defined in: } 25, 26, 28, \kappa \text{ defined in: } 24, 25, 26, 27, 28. \]

<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Ordinal</th>
<th>limitType</th>
<th>Ordinal</th>
<th>limitType</th>
</tr>
</thead>
<tbody>
<tr>
<td>paramLimit</td>
<td>\varphi(\omega, 0)</td>
<td>1</td>
<td>\omega_{12}</td>
<td>5</td>
</tr>
<tr>
<td>paramNxtLimit</td>
<td>\varphi(\varepsilon_0, 0, 0, 33)</td>
<td>1</td>
<td>\omega_{12}(\omega_{11}, 0, 0, 3)</td>
<td>12</td>
</tr>
<tr>
<td>functionLimit</td>
<td>\varphi(4, 0, 0)</td>
<td>1</td>
<td>\omega_{12} + 12, \omega_{12} + 10</td>
<td>20</td>
</tr>
<tr>
<td>functionNxtLimit</td>
<td>\varphi(15)</td>
<td>1</td>
<td>\omega_{12} + 11, \omega_{12} + 12(\omega + 5)</td>
<td>\omega^\omega</td>
</tr>
<tr>
<td>drillDownLimit</td>
<td>\omega_2</td>
<td>1</td>
<td>\omega_{12}</td>
<td>13</td>
</tr>
<tr>
<td>indexCKlimit</td>
<td>\omega_{\omega^\omega}</td>
<td>1</td>
<td>\omega_{\omega^\omega + 1} + 1</td>
<td>\omega_{\omega^\omega + 1} + 1</td>
</tr>
<tr>
<td>indexCKsuccEmbed</td>
<td>\omega_{\omega^\omega}</td>
<td>1</td>
<td>\omega_{\omega^\omega + 1} + 1</td>
<td>\omega_{\omega^\omega + 1} + 1</td>
</tr>
<tr>
<td>indexCKsuccUn</td>
<td>\omega_{\omega^\omega + 1}</td>
<td>1</td>
<td>\omega_{\omega^\omega + 1} + 1</td>
<td>\omega_{\omega^\omega + 1} + 1</td>
</tr>
<tr>
<td>indexCKlimitParamUn</td>
<td>\omega_{\omega^\omega}</td>
<td>1</td>
<td>\omega_{\omega^\omega} + 1</td>
<td>\omega_{\omega^\omega} + 1</td>
</tr>
<tr>
<td>indexCKlimitEmbed</td>
<td>\omega_{\omega^\omega}</td>
<td>1</td>
<td>\omega_{\omega^\omega} + 1</td>
<td>\omega_{\omega^\omega} + 1</td>
</tr>
</tbody>
</table>

Table 66: limitOrd and LimitTypeInfo examples through admisCodeLevel

11.7 fixedPoint member function

AdmisLevOrdinal::fixedPoint is used by admisLevelFunctional to create an instance of an AdmisLevOrdinal (expressions 24 to 28) that is the simplest representation of the ordinal. It is not intended for direct use but it is documented here because of the importance of the algorithm. The routine has the following parameters.

- The admissible ordinal index or \(\kappa \).
- The function level or \(\gamma \).
- An index specifying the largest parameter of the ordinal notation being constructed. If the largest parameter is the function level the index has the value \(\text{iterMaxParam} \) defined as \(-1 \).
- The function parameters (a NULL terminated array of pointers to Ordinals) or just NULL if there are none. These are the \(\beta_i \) from a term in Expression 23.
- An instance of class embedding that contains the value of \(\delta \).

This function determines if the parameter, at the specified index, is a fixed point for an AdmisLevOrdinal created with the specified parameters. If so, \text{true} is returned and otherwise \text{false}. The routine that calls this routine selects the largest parameter from the function level (\(\gamma \)) and the array of Ordinal pointers (\(\beta_i \)) and indicates this in the index parameter. Note no legal value of \(\eta \) and no countable value of the ordinal represented by \(\delta \) (which is always countable in this implementation) can be a fixed point. The calling routine insures that less significant parameters are 0 and the above conditions that preclude a fixed point are not met. This routine is called only if all these checks are passed.
<table>
<thead>
<tr>
<th>AdmisLevOrdinal::limitOrd parameter</th>
<th>ω</th>
<th>ε₀</th>
<th>ω₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω₁</td>
<td>ω₁[ω]</td>
<td>ω₁[ε₀]</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>ω₂</td>
<td>ω₂[ω]</td>
<td>ω₂[ε₀]</td>
<td>ω₂[ω₁]</td>
</tr>
<tr>
<td>ω₁</td>
<td>ω₁[ω]</td>
<td>ω₁[ε₀]</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>ω₁⁺₁(ω₁⁺₁)</td>
<td>ω₁⁺₁(ω₁⁺₁[ω] + 1)</td>
<td>ω₁⁺₁(ω₁⁺₁[ε₀] + 1)</td>
<td>ω₁⁺₁(ω₁⁺₁[ω₁] + 1)</td>
</tr>
<tr>
<td>ω₁⁺₁</td>
<td>ω₁⁺₁[ω]</td>
<td>ω₁⁺₁[ε₀]</td>
<td>ω₁⁺₁[ω₁]</td>
</tr>
<tr>
<td>ω₁,ω₁</td>
<td>ω₁⁺¹[ω] + 1</td>
<td>ω₁⁺¹[ε₀] + 1</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>ω₁₀₀</td>
<td>ω₁₀₀[ω]</td>
<td>ω₁₀₀[ε₀]</td>
<td>ω₁₀₀[ω₁]</td>
</tr>
<tr>
<td>ω₁₁(ω₁)</td>
<td>ω₁₁(ω₁[ω] + 1)</td>
<td>ω₁₁(ω₁[ε₀] + 1)</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>ω₁₃(ω₁)</td>
<td>ω₁₃(ω₁[ω] + 1)</td>
<td>ω₁₃(ω₁[ε₀] + 1)</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>ω₁₀(ω₁)</td>
<td>ω₁₀(ω₁[ω] + 1)</td>
<td>ω₁₀(ω₁[ε₀] + 1)</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>ω₁₀⁺₁(1)</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>ω₁₀⁺ω₁⁺₁</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>[2, 3]</td>
<td>ω₁[1]</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>[3]</td>
<td>ω₁[1]</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>[2, 4]</td>
<td>ω₁[1]</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>[4, 4, 1]</td>
<td>ω₁[1]</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
</tr>
<tr>
<td>[4, 4, 1]</td>
<td>ω₁[1]</td>
<td>[4, 4, 1]</td>
<td>ω₁[1][ω]</td>
</tr>
<tr>
<td>[4, 1, 4, 2]</td>
<td>ω₁[1]</td>
<td>parameter is too big</td>
<td>parameter is too big</td>
</tr>
</tbody>
</table>

Table 67: AdmisLevOrdinal::limitOrd examples.
Any integer **factor**, or smaller term in a parameter means it cannot be a fixed point. Section 8.3 describes **psuedoCodeLevel** which records this as well as the **codeLevel** of the term if this is not true. If that level is less than **AdmisCodeLevel**, `false` is returned.

If none of the previous tests fail, an **AdmisLevOrdinal** is constructed from all the parameters except that selected by the index. If this value is less than the selected parameter, `true` is returned and otherwise `false`.

11.8 Operators

The multiplication and exponentiation routines for **FiniteFuncOrdinal**, **Ordinal** and the associated **classes** for normal form terms do not need to be overridden except for some utilities such as that used to create a copy of an **AdmisNormalElement** normal form term with a new value for **factor**.

12 Nested Embedding

The δ parameter in expressions 26 ([[δ]]ωκ[η]), 27 ([[δ]]ωκγ(β1, β2, ..., βm)) and 28 ([[δ]]ωκ[[η]]) allows a restricted version of the notation system to be embedded within itself. In this section we describe how to generalize and nest this embedding. The idea is to index the δ level with an ordinal notation, σ, and further expand the indexing with a list of these pairs. The first value of δ continues to limit the size of η. Values of δ that follow it must either be increasing or equal with increasing values of σ, κ, in turn, must be ≥ the last δ. The first δ indicates the level at which the η parameter for the ordinal as a whole and any of its parameters is restricted. Subsequent δs do not affect this. The additional index or σ can be any ordinal notation with this restriction. It is not otherwise limited.

Recall that the ordinal hierarchy beyond the Church-Kleene ordinal is somewhat like the Mandelbrot set. Any recursive formalization of the hierarchy has a well ordering less than the Church Kleene ordinal and thus it can be embedded within itself at many places and to any finite depth. This nesting must be managed to avoid an infinite descending chain or inconsistency.

The expressions for the expanded notations are as follows.

\[
[[\delta_1 \sigma_1, \delta_2 \sigma_2, ..., \delta_m \sigma_m]]\omega_k[\eta] \quad (29)
\]
\[
[[\delta_1 \sigma_1, \delta_2 \sigma_2, ..., \delta_m \sigma_m]]\omega_k[[\eta]] \quad (30)
\]
\[
[[\delta_1 \sigma_1, \delta_2 \sigma_2, ..., \delta_m \sigma_m]]\omega_k,\gamma(\beta_1, \beta_2, ..., \beta_n) \quad (31)
\]

There are restrictions that limit the above ordinal notations.

1. If κ is a limit then no η parameter is allowed.
2. The most significant δ cannot be a limit.
3. If any other δ is a limit, then the associated σ must be 0.
4. If the σ associated with the least significant δ is a limit, then no η parameter is allowed.
12.1 Filling the Gaps

The idea is to partially fill the ultimately unclosable gaps between admissible ordinals. Additions to the ordinal hierarchy often expand at the top and indirectly fill in lower gaps. In this case the limit of the top is stable\(^{74}\) and only gaps are filled.

The rules that follow define \(\alpha.\text{limitOrd}(v)\) for any \(\alpha\) that satisfies the above syntax and restrictions and any legal parameter \(v\) in the existing system or an expansion of it. It should be possible to expand the system with an unbounded sequence of finite extensions that could completely define any notation in the system in terms of smaller ones through the recursive \(\text{limitOrd}\) algorithm. For recursive ordinals with notations in the system, notations for all smaller ordinals are in the system and accessible through either \(\text{limitOrd}\) or \(\text{limitElement}\).

In defining a notation for \([[\delta]]\omega_\kappa.\text{limitOrd}(v)\) with \(\kappa > \delta\) and \(\kappa\) a limit, the \(\delta\) prefix cannot be exceeded\(^{75}\). This and similar situations are designated by using \(\text{limitOrdA}\) in place of \(\text{limitOrd}\) (see Note 73). There is no actual routine \(\text{limitOrdA}\). It is a place holder for the specific algorithm needed to insure this. The \(\text{LimitTypeInfo enum(s)}\) (see Section 11.4 and Table 68) associated with each rule are listed at the end of the rule if applicable. If two rules apply to the same situation the first rule that matches is used.

1. Frequently, in computing \(\alpha.\text{limitOrd}(v)\), a parameter of \(\alpha\), \(p\), must be replaced with \(p.\text{limitOrd}(v)\). If the this occurs where the result might generate a fixed point, \(1\) is added to the limit \(\text{Ordinal}\).

2. If \(\kappa\) is the least significant nonzero parameter and a limit and \(\kappa = \delta_m\) then
 \[
 \alpha = [[\delta_1,\sigma_1, \delta_2, \sigma_2, ..., \delta_{m-1}, \sigma_{m-1}, \delta_m]\omega_\delta_m \text{ and} \]
 \[
 \alpha.\text{limitOrd}(\zeta) = [[\delta_1,\sigma_1, \delta_2, \sigma_2, ..., \delta_{m-1}, \sigma_{m-1}, \delta_m.\text{limitOrdA}(\zeta)]\omega_\delta_m.\text{limitOrdA}(\zeta).
 \]
 There must be a \(\delta_{m-1}\) because \(\delta_1\) cannot be a limit. Thus the two occurrences of \(\delta_m.\text{limitOrdA}(\zeta)\) are adjusted identically to insure that \(\delta_m.\text{limitOrdA}(\zeta)\) is a strictly increasing function that is always \(> \delta_m\) which must be \(< \delta_m\).
 Corresponding \(\text{LimitTypeInfo leastLevelLimit}\).

3. If the least significant nonzero parameter, \(\zeta\), is a limit then \(\zeta\) in \(\alpha\) is replaced with \(\zeta.\text{limitOrd}(v)\) in \(\alpha_l\). If the least significant nonzero parameter is \(\kappa\), \(\zeta.\text{limitOrdA}(v)\) may need to be adjusted to be greater than the last and largest \(\delta_l\).
 Corresponding \(\text{LimitTypeInfo paramLimit, functionLimit}\).

4. If \(\kappa\) is a successor and the least significant nonzero parameter (the \(\delta_s\) and \(\sigma_s\) are more significant) then \(\alpha.\text{limitOrd}(\eta)\) appends \(\eta\) as a suffix to the notation for \(\alpha_l\). If \(\alpha\) contains a nonzero \(\delta_l\), the appended notation is \([[\eta]]\) and otherwise \([\eta]\).
 Corresponding \(\text{LimitTypeInfo indexCKsuccUn, indexCKsuccEmbed}\).

5. If the least significant nonzero parameter is a successor, \(\beta_1\), and the next least significant parameter is \(\kappa\) a limit and there the least significant \(\delta < \kappa\) then the following holds.
 \[
 \alpha = [[\delta_1,\sigma_1, \delta_2, \sigma_2, ..., \delta_{m},\sigma_{m}]\omega_\kappa(\beta_1).\]

\(^{74}\)The limit of the ordinals for which notations are defined in sections 10 through 13 is the limit of the sequence \(\zeta_n\) where \(\zeta_0 = \omega\) and \(\zeta_{i+1} = \omega_{\zeta_i}\) which is \(\omega, \omega\omega, \omega(\omega\omega), \omega(\omega(\omega\omega)), \ldots\).

\(^{75}\)One could also adjust the value of \(\delta\) in this sequence.
\(\alpha.\text{limitOrd}(\zeta) = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_{\kappa.\text{limitOrdA}(\zeta)}, [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_\kappa(\beta_1-1).\)

Corresponding LimitTypeInfo indexCKlimitParamUn.

6. If the least significant parameter is \(\kappa\), a limit, and and there is at least one \(\delta\) prefix then the following holds.
\[\alpha = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_\kappa.\]
\(\alpha.\text{limitOrd}(\zeta) = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_{\kappa.\text{limitOrdA}(\zeta)}.\)
Corresponding LimitTypeInfo indexCKlimitEmbed.

7. If \(\alpha = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_{\delta_m}\) and \(\sigma_m\) is a limit then
\(\alpha.\text{limitOrd}(\zeta) = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_{m-1},\sigma_{m-1}, \delta_m,\sigma_m.\text{limitOrd}(\zeta)]]\omega_{\delta_m}.\)
Corresponding LimitTypeInfo leastIndexLimit.

8. If \(\alpha = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_{\delta_m}(\beta_1)\) with \(\beta_1\) a successor and \(\sigma_m\) a limit then
\(\gamma = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_{\delta_m}(\beta_1-1)\) and
\(\alpha.\text{limitOrd}(\zeta) = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_{m-1},\sigma_{m-1}, \delta_m,\sigma_m.\text{limitOrd}(\zeta)]]\omega_{\delta_m,b}\)
Corresponding LimitTypeInfo leastIndexLimitParam.

9. If the the least significant parameter is \(\gamma\), a successor, in for example \(\alpha = \omega_{\kappa,\gamma}\), then only integer values for the parameter of \text{limitOrd} are legal.
\(\omega_{\kappa,\gamma}.\text{limitOrd}(n) = \omega_{\kappa,\gamma-1}(\omega_{\kappa,\gamma-1}+1, 0, \ldots, 0)\) where there are \(n\) -1 zeros. If there are other more significant parameters they are copied unchanged.
Corresponding LimitTypeInfo functionSucc.

10. If the \([\eta]\) suffix (always the least significant if present) is a successor \(> 1\) then only integer values for the parameter of \text{limitOrd} are legal. If \(\kappa > 1\) then the following holds.
\(\alpha.\text{limitOrd}(1) = \omega_{\kappa}[\eta - 1]\) and
\(\alpha.\text{limitOrd}(n + 1) = \omega_{\kappa-1,\alpha.\text{limitOrd}(n)+1}.\)
\(\delta\) and \(\sigma\) parameters may also be present and are copied without change if present.
Corresponding LimitTypeInfo drillDownSucc.

11. If the \([\eta]\) suffix (always the least significant if present) is a successor \(> 1\) then only integer values for the parameter of \text{limitOrd} are legal. If \(\kappa = 1\) then the following holds.
\(\alpha.\text{limitOrd}(1) = \omega_{\kappa}[\eta - 1]\) and
\(\alpha.\text{limitOrd}(n + 1) = \varphi_{\alpha.\text{limitOrd}(n)+1}.\)
Corresponding LimitTypeInfo drillDownSuccCKOne.

12. If the \([\eta]\) suffix (if present the least significant) is a successor \(> 1\) then only integer values for the parameter of \text{limitOrd} are legal. For
\(\alpha = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_{\kappa}[\eta],\)
\(\alpha.\text{limitOrd}(1) = \omega_{\kappa}[\eta - 1]\) and
\(\alpha.\text{limitOrd}(n + 1) = \omega_{\kappa}[[\alpha.\text{limitOrd}(n)].\)
Corresponding LimitTypeInfo drillDownSuccEmbed.

13. If the suffix is \([1]\) then only integer values for the parameter of \text{limitOrd} are legal.
For \(\alpha = [[\delta_1,\sigma_1, \delta_2,\sigma_2, \ldots, \delta_m,\sigma_m]]\omega_{\kappa}[1],\) \(\alpha.\text{limitOrd}(1) = \omega\) and
\(\alpha.\text{limitOrd}(n + 1) = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]_n \omega_n [\alpha.\text{limitOrd}(n)]. \)

The \(\delta \) and \(\sigma \) prefix values are copied unchanged unless there is a single \(\delta_1 \) (with no sigma) and \(\delta_1 \kappa. \) In this case \(\delta \) is deleted in the \text{limitOrd} results.

Corresponding \text{LimitTypeInfo} \text{drillDownOneEmbed}.

14. If \(\kappa \) is a successor and the least significant nonzero parameter and the next least significant parameter is \(\sigma_n, \) a limit, then \(\alpha = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]_n \omega_n \) and \(\alpha.\text{limitOrd}(\zeta) = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m, \kappa.\text{limitOrd}(\zeta)]]_n \omega_n. \)

Corresponding \text{LimitTypeInfo} \text{leastIndexLimit}.

15. If \(\kappa \), a limit, is the least significant parameter and there is no \(\delta, \sigma \) prefix then the following hold.

\(\alpha = \omega_n. \alpha.\text{limitOrd}(\zeta) = \omega_n.\kappa.\text{limitOrd}(\zeta). \)

Corresponding \text{LimitTypeInfo} \text{indexCKlimit}.

16. If \(\kappa = 1 \) with the suffix [1], no \(\delta \) are possible. If \(\alpha = \omega_1[1] \) and \(\alpha.\text{limitOrd}(1) = \omega \) and \(\alpha.\text{limitOrd}(n + 1) = \varphi_{\alpha.\text{limitOrd}(m)}. \)

Corresponding \text{LimitTypeInfo} \text{drillDownCKOne}.

17. If the \(\eta \) suffix is [1] then it is the least significant parameter and only integer values for the parameter of \text{limitOrd} are legal.

Corresponding \text{LimitTypeInfo} \text{drillDownOne}.

(a) If \(\kappa \) a successor \(> 1 \) and, if present, the least significant \(\delta_1 < \kappa \) then

\(\alpha.\text{limitOrd}(1) = \omega_{\kappa - 1} \) and \(\alpha.\text{limitOrd}(n + 1) = \omega_{\kappa, \alpha.\text{limitOrd}(n)}. \)

(b) If \(\alpha = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_n, \sigma_n]]_n \omega_n \) and \(\delta_m \) is a successor then

\(\alpha.\text{limitOrd}(1) = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_n, \sigma_n]]_n \omega_n \) and

\(\alpha.\text{limitOrd}(n + 1) = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_n, \sigma_n, \alpha.\text{limitOrd}(n)]]_n \omega_n. \)

18. If the \([\eta] \) or \([[\eta]] \) suffix represents a limit ordinal in \(\alpha \) then in \(\alpha.\text{limitOrd}(\zeta) \) \(\eta \) is replaced with \(\eta.\text{limitOrd}(\zeta). \)

Corresponding \text{LimitTypeInfo} \text{drillDownLimit}.

19. If the least significant nonzero parameter is \(\beta_1 \) and the next least significant parameter is \(\kappa \) then only integer values for the parameter of \text{limitOrd} are legal. If in addition either there is no \(\delta, \sigma \) prefix or the least significant \(\delta \) in the prefix is \(\kappa \) then the following holds. If \(\alpha = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_n, \sigma_n]]_n \omega_n(\beta_1) \) then

\(\alpha.\text{limitOrd}1 = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_n, \sigma_n]]_n \omega_n(\beta_1 - 1) \) and

\(\alpha.\text{limitOrd}(n + 1) = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_n, \sigma_n]]_n \omega_n(\kappa - 1, \alpha.\text{limitOrd}n). \)

Corresponding \text{LimitTypeInfo} \text{indexCKsuccParam}.

20. If the least significant nonzero parameter is \(\beta_1 \) and the next least significant parameter is \(\kappa \) then only integer values for the parameter of \text{limitOrd} are legal. If there is a single \(\delta \) prefix with no \(\sigma \) and \(\delta = \kappa \) then the following holds. \(\alpha = [[\delta]] \omega_\delta(\beta_1). \) newline

\(\alpha.\text{limitOrd}1 = \omega_\delta(\beta_1 - 1) \) and
\(\alpha.\text{limitOrd}(n + 1) = \lfloor (\delta - 1) \rfloor \omega_{\delta - 1, \alpha.\text{limitOrd}(n) + 1}. \)

21. If the least significant nonzero parameter is \(\beta \), a successor and the next least significant parameter is \(\kappa \), also a successor, then only integer values for the parameter of \text{limitOrd} are legal. If in addition \(\delta_m = \kappa \) then one of the following holds.

(a) If the least significant \(\delta \) has a corresponding \(\sigma \) (which must be a successor) and the next smallest legal prefix deletes the least significant \(\sigma, \delta \) pair then
\[
\alpha = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m] \omega_{\delta_m}(\beta_1). \\
\alpha.\text{limitOrd}(1) = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m] \omega_{\delta_m}(\beta_1 - 1). \\
\alpha.\text{limitOrd}(n + 1) = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m, \sigma_m - 1, \alpha.\text{limitOrd}(n)] \omega_{\alpha.\text{limitOrd}}(n) \rfloor. \\
\text{Corresponding LimitTypeInfo: leastIndexSuccParam}.
\]

(b) If the least significant \(\delta \) is a successor, it has a corresponding \(\sigma \), the next least significant parameter is \(\beta_1 \) and the next smallest prefix comes from decrementing the least significant \(\sigma \), then
\[
\alpha = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m] \omega_{\delta_m}(\beta_1). \\
\alpha.\text{limitOrd}(1) = \alpha = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m] \omega_{\delta_m}(\beta_1 - 1) \\
\alpha.\text{limitOrd}(n + 1) = \lfloor [\alpha = \delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m, \sigma_m - 1, \alpha.\text{limitOrd}(n)] \omega_{\alpha.\text{limitOrd}}(n) \rfloor. \\
\text{Corresponding LimitTypeInfo: leastIndexSuccParam}.
\]

(c) If the least significant \(\delta \) has no corresponding \(\sigma \) then
\[
\alpha = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m] \omega_{\delta_m}(\beta_1). \\
\alpha.\text{limitOrd}(1) = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m] \omega_{\delta_m}(\beta_1 - 1). \\
\alpha.\text{limitOrd}(n + 1) = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m, \alpha.\text{limitOrd}(n)] \omega_{\kappa} \rfloor. \\
\text{Corresponding LimitTypeInfo: leastLevelSuccParam}.
\]

22. If the two least significant nonzero parameters are successors or there is at least one zero \(\beta \) that is less significant than the least nonzero parameter which is also a \(\beta \), then only integer values for the parameter of \text{limitOrd} are legal. Then \(\alpha.\text{limitOrd}(1) \) = the original \text{Ordinal} with the least significant nonzero parameter decremented by 1. \(\alpha.\text{limitOrd}(n + 1) \) = the original \text{Ordinal} when the more significant parameters decremented by 1 and \(\alpha.\text{limitOrd}(n) \) substituted in the next least significant parameter whether or not it was zero).

Corresponding LimitTypeInfo: paramsSucc, paramSuccZero, functionNxtSucc.

23. If the least significant nonzero parameter is a successor and the next least nonzero parameter, \(\zeta \), is a limit then \(\alpha.\text{limitOrd}(\nu) \) = the original \text{Ordinal} with \(\zeta \) replaced by \(\zeta.\text{limitOrd}(\nu) \) and the next least significant parameter replaced by the original \text{Ordinal} with least significant nonzero parameter decremented by 1.

Corresponding LimitTypeInfo: paramNxtLimit, functionNxtLimit.

24. If the least significant nonzero parameter is \(\beta \) and \(\kappa \) is a limit equal to \(\delta_m \) and the next least significant parameter then the following holds.
\[
\alpha = \lfloor [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m] \omega_{\delta_m}(\beta_1).
\]
$\alpha.\text{limitOrd}(\zeta) = \left[[\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m \cdot \text{limitOrdA}(\zeta)] \omega \delta_m, \text{limitOrdA}(\zeta), [\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m] \omega \delta_m (\beta_1 - 1) + 1 \right]$

Corresponding LimitTypeInfo: leastLevelLimitParam.

Following are two tables based on the enum, LimitTypeInfo. The first gives conditions for each case, the associated limitType and the number of the above rule that applies (including a hyperlink). The first table links to the second through entries in the LimitTypeInfo column. This second table gives an example notation, α, and information about it for each entry. This includes the exit code of the limitElement routine that computed the result with a hyperlink to the table entry documenting that routine. The entry also includes the two computed values $\alpha.\text{limitOrd}(1)$ and $\alpha.\text{limitOrd}(2)$. Note for finite parameters limitOrd and limitElement are equivalent.
\[\beta_i \text{ defined in: } 23, 24, 27, 31; \gamma \text{ defined in: } 23, 24, 27, 31; \]
\[\eta \text{ defined in: } 25, 26, 28, 29, 30; \kappa \text{ defined in: } 24, 25, 26, 27, 28, 29, 31, 30; \sigma \text{ defined in: } 29, 31, 30. \]

<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Least significant nonzero parameters</th>
<th>limitType</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknownLimit</td>
<td>used internally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zeroLimit</td>
<td>the ordinal zero</td>
<td>nullLimitType</td>
<td></td>
</tr>
<tr>
<td>finiteLimit</td>
<td>a successor ordinals</td>
<td>nullLimitType</td>
<td></td>
</tr>
<tr>
<td>paramSucc</td>
<td>in (\omega^x) (x) is a successor</td>
<td>integerLimitType</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following is at code level cantorCodeLevel (Section 6) and above.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paramLimit</td>
<td>(\beta_i) is a limit</td>
<td>(\beta_i).limitType</td>
<td>3</td>
</tr>
<tr>
<td>paramSuccZero</td>
<td>successor (\beta_i), followed by at least one zero</td>
<td>integerLimitType</td>
<td>22</td>
</tr>
<tr>
<td>paramsSucc</td>
<td>least significant (\beta_i) is successor</td>
<td>integerLimitType</td>
<td>22</td>
</tr>
<tr>
<td>paramNxtLimit</td>
<td>Limit (\beta_i), zero or more zeros and successor.</td>
<td>(\beta_i).limitType()</td>
<td>23</td>
</tr>
<tr>
<td>functionSucc</td>
<td>(\gamma) is successor and (\beta_i) == 0.</td>
<td>integerLimitType</td>
<td>9</td>
</tr>
<tr>
<td>functionNxtSucc</td>
<td>(\gamma) and a single (\beta_i) are successors.</td>
<td>integerLimitType</td>
<td>22</td>
</tr>
<tr>
<td>functionLimit</td>
<td>(\gamma) is a limit and (\beta_i) == 0.</td>
<td>(\gamma).limitType</td>
<td>3</td>
</tr>
<tr>
<td>functionNxtLimit</td>
<td>(\gamma) is a limit and a single (\beta_i) is a successor.</td>
<td>(\gamma).limitType</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>The following is at code level finiteFuncCodeLevel (Section 8) and above.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>drillDownLimit</td>
<td>[\eta] or [[\eta]] suffix is a limit.</td>
<td>(\eta).limitType</td>
<td>18</td>
</tr>
<tr>
<td>drillDownSucc</td>
<td>[\eta] is a successor & (\beta_i) == 0.</td>
<td>integerLimitType</td>
<td>10</td>
</tr>
<tr>
<td>drillDownSuccCKOne</td>
<td>(\kappa == 1) & (([\eta] > 1)) & (\eta) is a successor.</td>
<td>integerLimitType</td>
<td>11</td>
</tr>
<tr>
<td>drillDownSuccEmbed</td>
<td>([\eta]) is a successor & (\beta_i) == 0.</td>
<td>integerLimitType</td>
<td>12</td>
</tr>
<tr>
<td>drillDownOne</td>
<td>(([\eta] == 1) & (\kappa > 1)).</td>
<td>integerLimitType</td>
<td>17b</td>
</tr>
<tr>
<td>drillDownOneEmbed</td>
<td>(([\eta] == 1).)</td>
<td>integerLimitType</td>
<td>13</td>
</tr>
<tr>
<td>drillDownCKOne</td>
<td>(\eta == \kappa == 1).</td>
<td>integerLimitType</td>
<td>16</td>
</tr>
<tr>
<td>indexCKlimit</td>
<td>(\kappa) is a limit and (\delta == 0).</td>
<td>(\kappa).limitType</td>
<td>15</td>
</tr>
<tr>
<td>indexCKsuccParam</td>
<td>(\kappa) and a single (\beta) are successors & (\kappa \neq \delta).</td>
<td>integerLimitType</td>
<td>19</td>
</tr>
<tr>
<td>indexCKsuccParamEq</td>
<td>(\kappa) and a single (\beta) are successors & (\kappa == \delta).</td>
<td>integerLimitType</td>
<td>20</td>
</tr>
<tr>
<td>indexCKsuccEmbed</td>
<td>(\kappa) is a successor and (\delta > 0).</td>
<td>indexCKtoLimitType</td>
<td>4</td>
</tr>
<tr>
<td>indexCKsuccUn</td>
<td>(\kappa) is a successor and (\delta == 0).</td>
<td>indexCKtoLimitType</td>
<td>4</td>
</tr>
<tr>
<td>indexCKlimitParamUn</td>
<td>(\kappa) is a limit and (\beta_1) is a successor</td>
<td>(\kappa).limitType</td>
<td>5</td>
</tr>
<tr>
<td>indexCKlimitEmbed</td>
<td>(\kappa) is limit and (\delta > 0).</td>
<td>(\kappa).limitType</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>The following is at code level admisCodeLevel (Section 11) and above.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leastIndexLimit</td>
<td>least significant (\sigma_i) is a limit</td>
<td>(\sigma_i).limitType</td>
<td>7</td>
</tr>
<tr>
<td>leastLevelLimit</td>
<td>least significant (\delta_i) is a limit</td>
<td>(\delta_i).limitType</td>
<td>2</td>
</tr>
<tr>
<td>leastIndexSuccParam</td>
<td>(\beta_1) and least significant (\sigma_i) are successors</td>
<td>integerLimitType</td>
<td>21a</td>
</tr>
<tr>
<td>leastLevelSuccParam</td>
<td>(\beta_1) and least significant (\sigma_i) are successors</td>
<td>integerLimitType</td>
<td>21c</td>
</tr>
<tr>
<td>leastIndexLimitParam</td>
<td>least significant (\sigma_i) is a limit, (\beta_1) successor</td>
<td>(\sigma_i).limitType</td>
<td>8</td>
</tr>
<tr>
<td>leastLevelLimitParam</td>
<td>least (\delta_1 == \kappa) both limits, (\beta_1) successor</td>
<td>(\delta_i).limitType</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 68: LimitTypeInfo descriptions through nestedEmbedCodeLevel
The following is at code level `cantorCodeLevel` (Section 6) and above.

<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Ordinal</th>
<th>X</th>
<th>$\omega^\omega + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>paramSucc</td>
<td>$\omega^{\omega + 1}$</td>
<td>C</td>
<td>$\omega^\omega + 1$</td>
</tr>
</tbody>
</table>

The following is at code level `finiteFuncCodeLevel` (Section 8) and above.

<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Ordinal</th>
<th>X</th>
<th>$\omega^\omega + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>paramLimit</td>
<td>$\varphi(\omega, 0)$</td>
<td>FL</td>
<td>$\varphi(2, 0)$</td>
</tr>
<tr>
<td>paramSuccZero</td>
<td>$\varphi(\omega + 12, 0, 0)$</td>
<td>FB</td>
<td>$\varphi(\omega + 11, 1, 0)$</td>
</tr>
<tr>
<td>paramSucc</td>
<td>$\varphi(\omega + 2, 5, 3)$</td>
<td>FD</td>
<td>$\varphi(\omega + 2, 5, 2)$</td>
</tr>
<tr>
<td>paramNxtLimit</td>
<td>$\varphi((\omega, 0, 0, 0, 3), 1)$</td>
<td>FN</td>
<td>$\varphi((\omega, \omega, 0, 0, 3), 1)$</td>
</tr>
</tbody>
</table>

The following is at code level `iterFuncCodeLevel` (Section 9) and above.

<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Ordinal</th>
<th>X</th>
<th>$\omega^\omega + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>functionNxtSucc</td>
<td>φ_0</td>
<td>IG</td>
<td>$\varphi_0(\varphi_1 + 1)$</td>
</tr>
<tr>
<td>functionNxtSucc</td>
<td>$\varphi_1(4)$</td>
<td>II</td>
<td>$\varphi_1(\varphi_1 + 1)$</td>
</tr>
<tr>
<td>functionLimit</td>
<td>$\varphi_2(1, 0, 0)$</td>
<td>LI</td>
<td>$\varphi_2(3, \varphi_2(1, 0, 1)) + 1$</td>
</tr>
<tr>
<td>functionNxtLimit</td>
<td>$\varphi_3(15)$</td>
<td>IK</td>
<td>$\varphi_3(\varphi_4(14) + 1)$</td>
</tr>
</tbody>
</table>

The following is at code level `admisCodeLevel` (Section 11) and above.

<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Ordinal</th>
<th>X</th>
<th>$\omega^\omega + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>drillDownLimit</td>
<td>$[2]_{\omega^2 + 1}$</td>
<td>DCAL</td>
<td>$[2]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>drillDownSucc</td>
<td>$[2]_{\omega^2 + 1}$</td>
<td>DCES</td>
<td>$[2]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>drillDownSuccCKOne</td>
<td>$[2]_{\omega^2 + 1}$</td>
<td>DCDO</td>
<td>$[2]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>drillDownSuccEmbed</td>
<td>$[3]_{\omega^2 + 1}$</td>
<td>DCCS</td>
<td>$[3]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>drillDownOne</td>
<td>$[2]_{\omega^2 + 1}$</td>
<td>DCDO</td>
<td>$[2]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>drillDownOneEmbed</td>
<td>$[3]_{\omega^2 + 1}$</td>
<td>DCCO</td>
<td>$[3]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>indexCKlimit</td>
<td>ω^ω</td>
<td>LCBL</td>
<td>ω^ω</td>
</tr>
<tr>
<td>indexCKsuccParam</td>
<td>$[3]_{\omega^2 + 1}$</td>
<td>LEMP</td>
<td>$[3]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>indexCKsuccParamEq</td>
<td>$[12]_{\omega^2 + 1}$</td>
<td>LECK</td>
<td>$[12]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>indexCKsuccEmbed</td>
<td>$[2]_{\omega^2 + 1}$</td>
<td>LEEC</td>
<td>$[2]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>indexCKsuccUn</td>
<td>ω^ω</td>
<td>LEEG</td>
<td>ω^ω</td>
</tr>
<tr>
<td>indexCKlimitEmbed</td>
<td>$[12]_{\omega^2 + 1}$</td>
<td>LECG</td>
<td>$[12]_{\omega^2 + 1}$</td>
</tr>
</tbody>
</table>

The following is at code level `nestedEmbedCodeLevel` (Section 12) and above.

<table>
<thead>
<tr>
<th>LimitTypeInfo</th>
<th>Ordinal</th>
<th>X</th>
<th>$\omega^\omega + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>leastIndexLimit</td>
<td>$[10, 20]_{\omega^2 + 1}$</td>
<td>NEF</td>
<td>$[10, 20]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>leastIndexLimit</td>
<td>$[12, 20]_{\omega^2 + 1}$</td>
<td>NEQ</td>
<td>$[12, 20]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>leastIndexSuccParam</td>
<td>$[12, 20]_{\omega^2 + 1}$</td>
<td>PLED</td>
<td>$[12, 20]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>leastLevelSuccParam</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
<td>PLEK</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>leastLevelSuccParam</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
<td>PLEB</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>leastLevelLimiteParam</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
<td>NEB</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
</tr>
<tr>
<td>leastLevelLimiteParam</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
<td>NEC</td>
<td>$[3, 4]_{\omega^2 + 1}$</td>
</tr>
</tbody>
</table>

Table 69: `limitElement` and `LimitTypeInfo` examples through `nestedEmbedCodeLevel`
class NestedEmbedOrdinal partially fills the gaps in the countable admissible hierarchy as defined by the AdmisLevOrdinal class in Section 11 and discussed in Section 12.1. class NestedEmbedOrdinal is derived from AdmisLevOrdinal and its base classes. As always the ordinal notations it defines can be used in all the base classes it is derived from down to Ordinal.

C++ class NestedEmbedOrdinal uses the notation in expressions 29 through 31. In the ordinal calculator the ‘\’ character is replaced with ‘/’. Examples of this are shown in Table 70. The parameter to the left of ‘\’ is referred to as the level and the one to the right as the index. The number of entries in the prefix in double square brackets is the number of \(\delta_i, \sigma_i \) pairs. The level or \(\delta_i \) cannot be 0. The index (and \(\sigma_i \)) are omitted if \(\sigma_i = 0 \).

The class for a single term of a NestedEmbedOrdinal is NestedEmbedNormalElement. It is derived from AdmisNormalElement and its base classes.

Only the prefix in double square brackets is new. All other NestedEmbedOrdinal parameters are the same as those in AdmisLevOrdinals. The prefix parameters must either include two \(\delta_i, \sigma_i \) entries with a non zero value for level or one entry with a nonzero value for both the level and index. If this condition is not met than the notation defines an AdmisLevOrdinal.

The NestedEmbedNormalElement class should not be used directly to create ordinal notations. Instead use function nestedEmbedFunctional. Often the easiest way to define an ordinal at this level is interactively in the ordinal calculator. The command ‘cppList’ can generate C++ code for any ordinals defined interactively. Some examples are shown in Figure 5. This figure is largely self explanatory except for the classes IndexedLevel and NestedEmbeddings used to define the double bracketed prefix. IndexedLevel is a \(\delta_i, \sigma_i \) pair. NestedEmbeddings is a class containing an array of pointers to IndexedLevels and a flag that indicates if the drillDown suffix has double square brackets.

13.1 compare member function

NestedEmbedNormalElement::compare is called from a notation for a single term in the form of expressions 29 through 31. It compares the CantorNormalElement parameter, trm, against the NestedEmbedNormalElement instance compare is called from. As with AdmisLevOrdinals and its base classes, the work of comparing Ordinals with multiple terms is left to the Ordinal and OrdinalImpl base class functions which call the virtual functions that operate on a single term.

NestedEmbedNormalElement::compare, with a CantorNormalElement and an ignore factor flag as arguments, overrides AdmisNormalElement::compare with the same arguments (see Section 11.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argument. There are two versions of NestedEmbedNormalElement::compare the first has two arguments as described above. The second is for internal use only and has two additional context arguments. the context for the base function and the context for the argument. The context is expanded from that in Section 11.1 using an expanded base class NestedEmbeddings from Embeddings. The expanded version includes the entire double square bracketed prefix in force at this stage of the compare.

compare first checks if its argument’s codeLevel is > nestedEmbedCodeLevel. If so
// a = [[w + 1, w + 1/1]]\omega_{w + 1}[1]
static const IndexedLevel * const a0IndexedLevel[] = {
 new IndexedLevel((* new Ordinal(expFunctional(Ordinal::one).getImpl()
 .addLoc(Ordinal::one))) ,Ordinal::zero),
 new IndexedLevel((* new Ordinal(expFunctional(Ordinal::one).getImpl()
 .addLoc(Ordinal::one))) ,Ordinal::one),
 NULL
};
const Ordinal& a = nestedEmbedFunctional(
(* new Ordinal(expFunctional(Ordinal::one).getImpl()
 .addLoc(Ordinal::one))),
Ordinal::zero,
(* new NestedEmbeddings(a0IndexedLevel, false)),
NULL,
Ordinal::one
);

// b = [[1, 1/1]]\omega_{1}[1]
static const IndexedLevel * const b1IndexedLevel[] = {
 new IndexedLevel(Ordinal::one ,Ordinal::zero),
 new IndexedLevel(Ordinal::one ,Ordinal::one),
 NULL
};
const Ordinal& b = nestedEmbedFunctional(
Ordinal::one,
Ordinal::zero,
(* new NestedEmbeddings(b1IndexedLevel, false)),
NULL,
Ordinal::one
);

Figure 5: Defining NestedEmbedOrdinals with cppList
it calls a higher level routine by calling its argument’s member function. The code level of the class object that NestedEmbedNormalElement::compare is called from should be nestedEmbedCodeLevel.

The prefix list of δ-prefix does for an AdmisNormalElement. This context is passed as the nestedEmbeddings member variable of a NestedEmbedNormalElement. The same structure can also be reference as embeddings in the AdmisNormalElement base class. The context is relevant to comparisons of internal parameters of two notations being compare. Thus the context sensitive version of compare passes embeddings to compares that are called recursively.

The context sensitive version of the virtual function compare has four arguments.

- **const OrdinalImpl& embdIx** — the context for the base class object from which this compare originated.

- **const OrdinalImpl& termEmbdIx** — the context of the CantorNormalElement term at the start of the compare.

- **const CantorNormalElement& trm** — the term to be compared at this point in the comparison tree.

- **bool ignoreFactor** — an optional parameter that defaults to false and indicates that an integer factor is to be ignored in the comparison.

Table 70: NestedEmbedOrdinal interpreter code examples
As with compare for AdmisLevOrdinals and its base classes, this function depends on the getMaxParameter() that returns the maximum value of all the parameters (except η and the list of δ, σ pairs) in expressions 29 through 31.

The logic of NestedEmbedNormalElement::compare with the above four parameters is summarized in Table 72. This is an extension of Table 48 and uses definitions from that table and depends on the NestedEmbeddings::compare function.

13.2 class NestedEmbeddings

NestedEmbeddings is defined within class NestedEmbedNormalElement using the base class Embeddings. It contains the list of δ_i, σ_i pairs and a flag Embeddings::isDrillDownEmbed indicating if the prefix is $[\eta]$ (returns false) or $[[\eta]]$ (returns true). It contains a variety of other flags and functions to facilitate operations on Embeddings and NestedEmbeddings. Of particular importance is the ability to compare the size of two Embeddings and to find the nextLeast most significant index (assuming the least significant parameter is not a limit). These latter two routines are documented next.

13.2.1 compare member function

compare with a single parameter of class Embeddings is a virtual function of both NestedEmbeddings and its base class. It returns 1, 0 or -1 if its argument is less than, equal to or greater than the NestedEmbeddings instance it is called from. The comparison starts with the most significant δ in the list of δ, σ pairs in the notation prefixes. If they are not equal the result of this comparison is returned. If not the counts of δ values are compared. If they are not equal the difference is returned. If not, the σs paired with the first δs are compared. Again if a there is a difference that result is returned. If the first pairs are identical the same test is applied to the second pair. This is repeated until there is no further δ or σ to check in one or both pairs. If this is true of only one prefix then the other pair is greater. If it is true of both they are equal.

When checking against an argument that is of only type Embeddings there is at most a single δ value to compare. If there is no δ value to compare -1 is returned. If the two δs are equal +1 is returned. Otherwise the difference is returned.

13.2.2 nextLeast member function

This is a member function of both classes Embeddings and NestedEmbeddings but it is only used at the nestedEmbedCodeLevel and above. It computes the next smallest version of NestedEmbeddings or Embeddings consistent with the restrictions on notations that immediately follow expressions 29 to 31. It also sets an enum howCreated. This is used in Table 74.

13.3 limitElement member function

NestedEmbedNormalElement::limitElement overrides base functions starting with AdmisNormalElement::limitElement (see Section 11.2). It operates on a single term of
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>effEbd</td>
<td><code>effectiveEmbedding(embed)</code></td>
</tr>
<tr>
<td><code>effectiveEmbedding</code></td>
<td>returns the maximum embedding of self and parameter embedding</td>
</tr>
<tr>
<td>embed</td>
<td><code>embedding</code> parameter for object <code>compare</code> is called from</td>
</tr>
<tr>
<td>embIx</td>
<td><code>embedIndex</code> from <code>effEbd</code></td>
</tr>
<tr>
<td>nestEmbed</td>
<td><code>nestedEmbeddings</code></td>
</tr>
<tr>
<td>termEmbed</td>
<td><code>embedding for compare parameter trm</code></td>
</tr>
<tr>
<td>trmEffEbd</td>
<td><code>trm.effectiveEmbeddings(termEmbed)</code></td>
</tr>
<tr>
<td>trmIxCK</td>
<td><code>indexCK parameter of trm</code></td>
</tr>
<tr>
<td>trmPmRst</td>
<td><code>termParamRestrict</code> (term has nonzero embedding)</td>
</tr>
</tbody>
</table>

Table 71: Symbols used in `compare` Table[72]

See tables 47 and 71 for symbol definitions.

Comparisons use `Embeddings` context for both operands.

<table>
<thead>
<tr>
<th>X</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEA1</td>
<td><code>(diff = parameterCompare(trm)) ≠ 0</code></td>
<td><code>diff</code></td>
</tr>
<tr>
<td>NEA2</td>
<td><code>((diff = nestEmbed.compare(trmEffEbd)) ≠ 0) ∧ trmPmRst</code></td>
<td><code>diff</code></td>
</tr>
<tr>
<td>NEA3</td>
<td><code>trm.codeLevel < admisCodeLevel</code></td>
<td>1</td>
</tr>
<tr>
<td>NEA4</td>
<td><code>trm.codeLevel > nestedEmbedCodeLevel</code></td>
<td><code>diff</code></td>
</tr>
<tr>
<td></td>
<td><code>diff = -trm.compare(*this)</code></td>
<td></td>
</tr>
<tr>
<td>NECA</td>
<td><code>(diff = (trmIxCK.compare(embIx) ≥ 0)?-1:1) ≠ 0</code></td>
<td><code>diff</code></td>
</tr>
<tr>
<td></td>
<td><code>!trmPmRst</code></td>
<td></td>
</tr>
<tr>
<td>NECZ</td>
<td><code>diff = AdmisNormalElement::compareCom(trm)</code> (see Table 49)</td>
<td><code>diff</code></td>
</tr>
</tbody>
</table>

if none of the above conditions are met

Table 72: `NestedEmbedNormalElement::compare` summary
the normal form expansion and does the bulk of the work. It takes a single integer parameter. Increasing values for the argument yield larger ordinal notations as output. In this version, as in `AdmisNormalElement::limitElement`, the union of the ordinals represented by the outputs for all integer inputs are not necessarily equal to the ordinal represented by the `NestedEmbedNormalElement` class instance `limitElement` is called from. They are equal if the `limitType` of this instance of `NestedEmbedNormalElement` is `integerLimitType` (see Section 10.3).

As usual `Ordinal::limitElement` does the work of operating on all but the last term of an `Ordinal` by copying all but the last term of the result unchanged from the input `Ordinal`. The last term is generated based on the last term of the `Ordinal` instance `limitElement` is called from.

`limitElement` calls `drillDownLimitElement` or `drillDownLimitElementEq` when there is a nonzero value for the `[` or `[[]` suffix. The “Eq” version is called if \(\kappa = \delta_m \) and the `[[]` prefix needs to be modified. It calls `embedLimitElement` in other cases where it is necessary to modify the `[[]` prefix. These four routines are outlined in tables 73 to 75. Each table references a second table of examples using exit codes (column X) to connect lines in each pair of tables.

One complication is addressed by routine `AdmisNormalElement::increasingLimit`. This is required when \(\kappa \) or the least significant level in the embedding is a limit and needs to be expanded. This routine selects an element from a sequence whose union is \(\kappa \) while insuring that this does not lead to a value less than the effective \(\delta \). This selection must be chosen so that increasing inputs produce increasing outputs and the output is always less than the input. The same algorithm is used for `limitOrd`. See Note 73 on page 120 for a description of the algorithm.
\[\alpha \text{ is a notation for one of expressions } 29 \text{ to } 31. \]
\[
[\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m, \omega_\kappa[\eta]]
[\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m, \omega_{\kappa, \gamma}(\beta_1, \beta_2, \ldots, \beta_m)]
[\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m, \omega_\kappa[\eta]]
\]

<table>
<thead>
<tr>
<th>X</th>
<th>Condition</th>
<th>LimitTypeInfo</th>
<th>(\alpha.\leq(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLA</td>
<td></td>
<td>paramLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>paramSuccZero</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>paramsSucc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>paramNxtLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>functionSucc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>functionLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>functionNxtLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>functionNxtSucc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>indexCKlimitParamUn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>indexCKlimitEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AdmisNormalElement::</td>
<td>limitElementCom(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Table 53.</td>
<td></td>
</tr>
<tr>
<td>NLB</td>
<td>(\delta_m = \kappa)</td>
<td>drillDownSucc</td>
<td>drillDownLimitElementEq(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownSuccCKOne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownCKOne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownSuccEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownCKOne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOneEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOneEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownLimitEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AdmisNormalElement::</td>
<td>limitElementCom(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Table 74.</td>
<td></td>
</tr>
<tr>
<td>NLC</td>
<td>(\delta_m \neq \kappa)</td>
<td>drillDownSucc</td>
<td>drillDownLimitElementCom(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownSuccCKOne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownSuccEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownCKOne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownOneEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drillDownLimitEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AdmisNormalElement::</td>
<td>limitElementCom(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Table 55.</td>
<td></td>
</tr>
<tr>
<td>NLE</td>
<td></td>
<td>indexCKlimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>indexCKsuccEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>indexCKsuccUn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>leastIndexLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>leastIndexLimitParam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>leastLevelLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>leastLevelLimitParam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Table 75.</td>
<td></td>
</tr>
<tr>
<td>NLP</td>
<td></td>
<td>leastIndexSuccParam</td>
<td>paramLimitElement(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leastLevelSuccParam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Table 76.</td>
<td></td>
</tr>
</tbody>
</table>

See Table 77 for examples.

Table 73: NestedEmbedNormalElement::limitElement cases
\(\alpha \) is a notation from expression 29.
\[
[[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]] \omega_{\kappa}[\eta]
\]
This expressions can also be written as:
\[
[[\Delta_m]] \omega_{\kappa}[\eta]
\]

The following satisfy \(\eta > 0 \land !\sigma_m.isLm \land (!\sigma_m.isZ \lor !\delta_m.isLm) \).

All entries assume \(sz == 0 \land (\lambda == 0) \land \eta.isSc \land !isDdEmb \).
They use the \([\delta'_1, \sigma'_1, \delta'_2, \sigma'_2, \ldots, \delta'_m, \sigma'_m] \) prefix (se or smallerEmbed) which is the next smallest (nextLeast) Embeddings. See Section 13.2.2.
All but the first entry initialize \(b \) and return this value when \(n == 1 \).

<table>
<thead>
<tr>
<th>X</th>
<th>Condition(s)</th>
<th>howCreated</th>
<th>(\alpha.le(n))</th>
</tr>
</thead>
</table>
| DQA | (se.el == bel) | NA | if (\(\eta==1 \)) \(b= [[\delta'_1]]\omega_{\kappa} \);
else \(b = [[\delta_1, \sigma_1, \delta_2, \sigma_2, \ldots, \delta_m, \sigma_m]]\omega_{\delta_m}[\eta-1] \);
for (i=1;i<n;i++) \(b = [[\delta'_1]]\omega_{b} \);
| DQB | | indexDecr2 indexDecr | for(i=1;i<n;i++) \(b = [[\delta'_1, \sigma'_1, \delta'_2, \sigma'_2, \ldots, \delta'_m, \sigma'_m]]\omega_{b} \); Rtn b |
| DQC | \(\delta'_m.isLm \) | levelDecrIndexSet levelDecr | for(i=1;i<n;i++) \(b = [[\delta'_1, \sigma'_1, \delta'_2, \sigma'_2, \ldots, \delta'_{m-1}, \sigma'_{m-1}, \delta'_m]]\omega_{b} \);
Rtn b |
| DQD | | levelDecrIndexSet levelDecr | for(i=1;i<n;i++) \(b = [[\delta'_1, \sigma'_1, \delta'_2, \sigma'_2, \ldots, \delta'_{m-1}, \sigma'_{m-1}, \delta'_m, b.lp1]]\omega_{\kappa} \);
Rtn b |
| DQE | | deleteLeast | for(i=1;i<n;i++) \(b = [[\delta'_1, \sigma'_1, \delta'_2, \sigma'_2, \ldots, \delta'_m, \sigma'_m]]\omega_{b} \); Rtn b |

See Table 78 for examples.

Table 74: NestedEmbedNormalElement::drillDownLimitElementEq cases
Symbols used here and in Table 82
See Table 51 for additional symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>limitElement (see Table 73)</td>
</tr>
<tr>
<td>loa</td>
<td>adjusted limitOrd or limitElement that takes into account the constraints on κ, δ and σ from more significant parameters. This is done with leUse (see Note 72) and increasingLimit (see Note 73).</td>
</tr>
</tbody>
</table>

α is a notation for expression 29 with $(\eta == 0) \land (\gamma == 0)$:

$$[[\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m]] \omega_\kappa \lor [[\Delta_m]] \omega_\kappa$$

See table 51 for additional symbol definitions.

The following α satisfies $(\eta == 0) \land (\gamma == 0) \land (sz < 2)$

<table>
<thead>
<tr>
<th>X</th>
<th>LimitTypeInfo</th>
<th>$\alpha.l(e(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEA</td>
<td>indexCKsuccEmbed</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m]] \omega_\kappa[n]$</td>
</tr>
<tr>
<td>NEB</td>
<td>leastIndexLimitParam</td>
<td>$b =[[\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m]] \omega_\kappa(\beta_1 - 1); \text{ Rtn}$</td>
</tr>
<tr>
<td>NEC</td>
<td>leastLevelLimitParam</td>
<td>$b =[[\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m]] \omega_\kappa(\beta_1 - 1); \text{ Rtn}$</td>
</tr>
<tr>
<td>NEF</td>
<td>leastIndexLimit</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m, \text{loa}(n)]] \omega_{\delta_m, \text{loa}(n), b}$</td>
</tr>
<tr>
<td>NEG</td>
<td>leastLevelLimit</td>
<td>$[[\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m, \text{loa}(n)]] \omega_{\delta_m, \text{loa}(n)}$</td>
</tr>
</tbody>
</table>

See Table 79 for examples.

Table 75: NestedEmbedNormalElement::embedLimitElement cases
\[\alpha \text{ is a notation for one of expressions 29 to 31.} \]

\[\left[[\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m] \omega_{[\eta]} \right] \]

All entries assume \(sz == 1 \land (\lambda == 0) \).

They initialize \(b = [\delta_1, \sigma_1, \delta_2, \sigma_2, ..., \delta_m, \sigma_m] \kappa(\beta_1 - 1) \) and return this value if \(n == 1 \).

They use the \([\delta'_1, \sigma'_1, \delta'_2, \sigma'_2, ..., \delta'_m, \sigma'_m] \) prefix (se or smallerEmbed) which is the next smallest (nextLeast) Embeddings. See Section 13.2.2

(se.el == bel) is smallerEmbed.embedLevel == Embeddings::baseEmbedLevel

(se.el == bel) iff se is the prefix for an AdmisLevOrdinal.

dl is deleteLeast, hc is howCreated. nse is nestedSmallerEmbed, a version of se in class NestedEmbeddings.

(nse.hc == dl) is true iff se was created by deleting the least significant \(\delta, \sigma \) pair.

<table>
<thead>
<tr>
<th>(X)</th>
<th>Conditions</th>
<th>LimitTypeInfo</th>
<th>(\alpha.e(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEB</td>
<td>(se.el == bel)</td>
<td>leastIndexSuccParam</td>
<td>for ((i=1; i<n; i++) b = [\delta'1, \omega{\delta'_1, b}.lp1]); Rtn b</td>
</tr>
<tr>
<td>PLEC</td>
<td>se.el(\neq)bel (\wedge) (nse.hc == dl)</td>
<td>leastIndexSuccParam</td>
<td>for ((i=1; i<n; i++) b = [\delta'_1, \delta'2, \sigma'2, ..., \delta'{m-1}, \sigma'{m-1}] \omega_b]); Rtn b</td>
</tr>
<tr>
<td>PLED</td>
<td>se.el(\neq)bel (\wedge) nse.hc (\neq) dl</td>
<td>leastIndexSuccParam</td>
<td>for ((i=1; i<n; i++) b = [\delta'_1, \delta'2, \sigma'2, ..., \delta'{m-1}, \sigma'{m-1}] \omega_b]); Rtn b</td>
</tr>
<tr>
<td>PLEE</td>
<td>se.el(\neq)bel</td>
<td>leastLevelSuccParam</td>
<td>for ((i=1; i<n; i++) b = [\delta'1, \delta'2, \sigma'2, ..., \delta'{m-2}, \sigma'{m-2}, \delta{m-1}, b.lp1]]</td>
</tr>
</tbody>
</table>

See Table 80 for examples.

Table 76: AdmisNormalElement::paramLimitElement cases
X is an exit code (see Table 73). UpX is a higher level exit code from a calling routine.

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>Ordinal</th>
<th>limitElement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>DCBO</td>
<td>NLB</td>
<td>[1,1]ω₃[1]</td>
<td>[1,1]ω₃[1]</td>
</tr>
<tr>
<td>DCAL</td>
<td>NLC</td>
<td>[2,12]ω₃+1ω₁</td>
<td>[2,12]ω₃+1ω₁</td>
</tr>
<tr>
<td>NEF</td>
<td>NLE</td>
<td>[4,5ω₃]ω₅</td>
<td>[4,5ω₃]ω₅</td>
</tr>
<tr>
<td>PLEE</td>
<td>NLP</td>
<td>[5,ω₃+4]ω₃+4(9)</td>
<td>[5,ω₃+4]ω₃+4(8)</td>
</tr>
</tbody>
</table>

Table 77: NestedEmbedNormalElement::limitElement examples
<table>
<thead>
<tr>
<th>X</th>
<th>Ordinal</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQA</td>
<td>$[5, 5, 1]_5$</td>
<td>$[5, 5, 1]_5$</td>
<td>$[5, 5, 1]_5$</td>
</tr>
<tr>
<td>DQA</td>
<td>$[1, 1, 1]_5$</td>
<td>$[1, 1, 1]_5$</td>
<td>$[1, 1, 1]_5$</td>
</tr>
<tr>
<td>DQA</td>
<td>$[5, 5, 1]_5$</td>
<td>$[5, 5, 1]_5$</td>
<td>$[5, 5, 1]_5$</td>
</tr>
<tr>
<td>DQA</td>
<td>$[12, 1]_{12}$</td>
<td>$[12, 1]_{12}$</td>
<td>$[12, 1]_{12}$</td>
</tr>
<tr>
<td>DQA</td>
<td>$[12, 1, 1]_{12}$</td>
<td>$[12, 1, 1]_{12}$</td>
<td>$[12, 1, 1]_{12}$</td>
</tr>
<tr>
<td>DQA</td>
<td>$[12, 12, 1]_{100}$</td>
<td>$[12, 12, 1]_{100}$</td>
<td>$[12, 12, 1]_{100}$</td>
</tr>
<tr>
<td>DQB</td>
<td>$[12, 15, 1, 1]_{12}$</td>
<td>$[12, 15, 1, 1]_{12}$</td>
<td>$[12, 15, 1, 1]_{12}$</td>
</tr>
<tr>
<td>DQB</td>
<td>$[12, 15, 1, 1]_{12}$</td>
<td>$[12, 15, 1, 1]_{12}$</td>
<td>$[12, 15, 1, 1]_{12}$</td>
</tr>
<tr>
<td>DQB</td>
<td>$[12, 7]_{12}$</td>
<td>$[12, 7]_{12}$</td>
<td>$[12, 7]_{12}$</td>
</tr>
<tr>
<td>DQB</td>
<td>$[3, 3, 1]_3$</td>
<td>$[3, 3, 1]_3$</td>
<td>$[3, 3, 1]_3$</td>
</tr>
<tr>
<td>DQC</td>
<td>$[12, 1, 12]_{100}$</td>
<td>$[12, 1, 12]_{100}$</td>
<td>$[12, 1, 12]_{100}$</td>
</tr>
<tr>
<td>DQC</td>
<td>$[12, 1, 12]_{100}$</td>
<td>$[12, 1, 12]_{100}$</td>
<td>$[12, 1, 12]_{100}$</td>
</tr>
<tr>
<td>DQC</td>
<td>$[12, 1, 12]_{100}$</td>
<td>$[12, 1, 12]_{100}$</td>
<td>$[12, 1, 12]_{100}$</td>
</tr>
<tr>
<td>DQD</td>
<td>$[3, 3]_{3}$</td>
<td>$[3, 3]_{3}$</td>
<td>$[3, 3]_{3}$</td>
</tr>
<tr>
<td>DQD</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
</tr>
<tr>
<td>DQE</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
</tr>
<tr>
<td>DQE</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
<td>$[1, 2, 2, 1, 1]_{12}$</td>
</tr>
<tr>
<td>DQE</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
</tr>
<tr>
<td>DQE</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
</tr>
<tr>
<td>DQE</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
</tr>
<tr>
<td>DQE</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
<td>$[1, 2, 1, 12]_{12}$</td>
</tr>
</tbody>
</table>

Table 78: NestedEmbedNormalElement::drillDownLimitElementEq examples
Table 79: NestedEmbedNormalElement::embedLimitElement examples

<table>
<thead>
<tr>
<th>X</th>
<th>Ordinal</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDE</td>
<td>$[5, 12, 44, 19] \omega_{25}$</td>
<td>$[5, 12, 44, 19] \omega_{13}$</td>
<td>$[5, 12, 44, 19] \omega_{25}$</td>
</tr>
<tr>
<td>LEDE</td>
<td>$[12, 15, 1] \omega_{15}$</td>
<td>$[12, 15, 1] \omega_{4}$</td>
<td>$[12, 15, 1] \omega_{15}$</td>
</tr>
<tr>
<td>LEDE</td>
<td>$[12, 15, 1] \omega_{16}$</td>
<td>$[12, 15, 1] \omega_{6}$</td>
<td>$[12, 15, 1] \omega_{16}$</td>
</tr>
<tr>
<td>LEDE</td>
<td>$[10, 15] \omega_{20}$</td>
<td>$[10, 15] \omega_{15}$</td>
<td>$[10, 15] \omega_{20}$</td>
</tr>
<tr>
<td>LEDE</td>
<td>$[12, 15] \omega_{15}$</td>
<td>$[12, 15] \omega_{15}$</td>
<td>$[12, 15] \omega_{15}$</td>
</tr>
<tr>
<td>NEB</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12}$</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12}$</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12}$</td>
</tr>
<tr>
<td>NEB</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12} \omega_{15} + 1$</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12} \omega_{15} + 1$</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12} \omega_{15} + 1$</td>
</tr>
<tr>
<td>NEB</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12} \omega_{15}$</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12} \omega_{15}$</td>
<td>$[12, 4, 15] \omega_{3} \omega_{15} \omega_{12} \omega_{15}$</td>
</tr>
<tr>
<td>NEF</td>
<td>$[1, 1000] \omega_{1}$</td>
<td>$[1, 1000] \omega_{1}$</td>
<td>$[1, 1000] \omega_{1}$</td>
</tr>
<tr>
<td>NEF</td>
<td>$[1, 1000] \omega_{1}$</td>
<td>$[1, 1000] \omega_{1}$</td>
<td>$[1, 1000] \omega_{1}$</td>
</tr>
<tr>
<td>NEF</td>
<td>$[5, 12, 44, 19] \omega_{3} \omega_{15} \omega_{12}$</td>
<td>$[5, 12, 44, 19] \omega_{3} \omega_{15} \omega_{12}$</td>
<td>$[5, 12, 44, 19] \omega_{3} \omega_{15} \omega_{12}$</td>
</tr>
<tr>
<td>NEG</td>
<td>$[2, 3] \omega_{4}$</td>
<td>$[2, 3] \omega_{4}$</td>
<td>$[2, 4] \omega_{4}$</td>
</tr>
<tr>
<td>LCEL</td>
<td>$[12, 4, \omega_{3}] \omega_{4} \omega_{3}$</td>
<td>$[12, 4, \omega_{3}] \omega_{4} \omega_{3}$</td>
<td>$[12, 4, \omega_{3}] \omega_{4} \omega_{3}$</td>
</tr>
</tbody>
</table>

Table 80: NestedEmbedNormalElement::paramLimitElement examples

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>Ordinal</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEB</td>
<td>NLP</td>
<td>$[12, 1] \omega_{12}$</td>
<td>$[12, 1] \omega_{12}$</td>
<td>$[12, 1] \omega_{12}$</td>
</tr>
<tr>
<td>PLEB</td>
<td>NLP</td>
<td>$[5, 12, 5, \omega + 12, 6] \omega_{12} \omega_{6}$</td>
<td>$[5, 12, 5, \omega + 12, 6] \omega_{12} \omega_{6}$</td>
<td>$[5, 12, 5, \omega + 12, 6] \omega_{12} \omega_{6}$</td>
</tr>
<tr>
<td>PLED</td>
<td>NLP</td>
<td>$[12, 15, 1] \omega_{15} \omega_{7}$</td>
<td>$[12, 15, 1] \omega_{15} \omega_{7}$</td>
<td>$[12, 15, 1] \omega_{15} \omega_{7}$</td>
</tr>
<tr>
<td>PLED</td>
<td>NLP</td>
<td>$[12, 15, 1] \omega_{15} \omega_{7}$</td>
<td>$[12, 15, 1] \omega_{15} \omega_{7}$</td>
<td>$[12, 15, 1] \omega_{15} \omega_{7}$</td>
</tr>
<tr>
<td>PLEE</td>
<td>NLP</td>
<td>$[5, 12, 4, \omega + 13] \omega_{13} \omega_{13} \omega_{13}$</td>
<td>$[5, 12, 4, \omega + 13] \omega_{13} \omega_{13} \omega_{13}$</td>
<td>$[5, 12, 4, \omega + 13] \omega_{13} \omega_{13} \omega_{13}$</td>
</tr>
<tr>
<td>LCDP</td>
<td>NLA</td>
<td>$[12, 15] \omega_{20} \omega_{20}$</td>
<td>$[12, 15] \omega_{20} \omega_{20}$</td>
<td>$[12, 15] \omega_{20} \omega_{20}$</td>
</tr>
<tr>
<td>LCDP</td>
<td>NLA</td>
<td>$[12, 15] \omega_{20} \omega_{20}$</td>
<td>$[12, 15] \omega_{20} \omega_{20}$</td>
<td>$[12, 15] \omega_{20} \omega_{20}$</td>
</tr>
</tbody>
</table>
Table 81: NestedEmbedNormalElement transitions

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>Ordinal</th>
<th>limitElement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDBO</td>
<td>LEAD</td>
<td>$\omega [1]$</td>
<td>ω</td>
</tr>
<tr>
<td>DDCO</td>
<td>LEAD</td>
<td>$\omega [1]$</td>
<td>$\omega [4]$</td>
</tr>
<tr>
<td>DCA</td>
<td>LEAD</td>
<td>$\omega [1]$</td>
<td>$\omega [4]$</td>
</tr>
<tr>
<td>DCBO</td>
<td>LEAD</td>
<td>$[1] \omega [1]$</td>
<td>ω</td>
</tr>
<tr>
<td>DQA</td>
<td>NLB</td>
<td>$[1, 1] \omega [1]$</td>
<td>$[1] \omega [1]$</td>
</tr>
<tr>
<td>DQA</td>
<td>NLB</td>
<td>$[1, 1] \omega [5]$</td>
<td>$[1, 1] \omega [4]$</td>
</tr>
<tr>
<td>DCA</td>
<td>NLC</td>
<td>$[1, 1] \omega [1]$</td>
<td>$[1, 1] \omega [1]$</td>
</tr>
<tr>
<td>DQA</td>
<td>NLC</td>
<td>$[1, 1] \omega [1]$</td>
<td>$[1, 1] \omega [1]$</td>
</tr>
<tr>
<td>DQA</td>
<td>NLC</td>
<td>$[4, 4, 4, 1]$</td>
<td>$[4] \omega [1]$</td>
</tr>
<tr>
<td>DQA</td>
<td>NLC</td>
<td>$[4, 4, 4, 5]$</td>
<td>$[4] \omega [1]$</td>
</tr>
<tr>
<td>DCA</td>
<td>NLC</td>
<td>$[4, 4, 4, 1]$</td>
<td>$[4] \omega [1]$</td>
</tr>
<tr>
<td>DQA</td>
<td>NLC</td>
<td>$[3, 4, 4, 1]$</td>
<td>$[3, 4] \omega [1]$</td>
</tr>
<tr>
<td>DQA</td>
<td>NLC</td>
<td>$[3, 4, 4, 5]$</td>
<td>$[3, 4] \omega [1]$</td>
</tr>
<tr>
<td>DCA</td>
<td>NLC</td>
<td>$[3, 4, 4, 1]$</td>
<td>$[3, 4] \omega [1]$</td>
</tr>
<tr>
<td>DQE</td>
<td>NLC</td>
<td>$[3, 4, 7, 4, 8] \omega [1]$</td>
<td>$[3, 4, 7] \omega [1]$</td>
</tr>
<tr>
<td>DCA</td>
<td>NLC</td>
<td>$[3, 4, 7, 4, 8] \omega [1]$</td>
<td>$[3, 4, 7] \omega [1]$</td>
</tr>
<tr>
<td>DQE</td>
<td>NLC</td>
<td>$[4, 6, 4, 7, 4, 8] \omega [1]$</td>
<td>$[4, 6, 4, 7] \omega [1]$</td>
</tr>
<tr>
<td>DQE</td>
<td>NLC</td>
<td>$[4, 6, 4, 7, 4, 8] \omega [5]$</td>
<td>$[4, 6, 4, 7] \omega [1]$</td>
</tr>
<tr>
<td>DCA</td>
<td>NLC</td>
<td>$[4, 6, 4, 7, 4, 8] \omega [1]$</td>
<td>$[4, 6, 4, 7] \omega [1]$</td>
</tr>
<tr>
<td>DQC</td>
<td>NLC</td>
<td>$[1, 2, 3, 4, \omega + 1] \omega [1]$</td>
<td>$[1, 2, 3, 4, \omega] \omega [1]$</td>
</tr>
</tbody>
</table>

X is an exit code (see Table 73). **UpX** is a higher level exit code from a calling routine.
13.4 isValidLimitOrdParam and maxLimitType member functions

Neither of these routines are overridden at this code level. See Section 11.3 for a description of isValidLimitOrdParam and Section 11.5 for a description of maxLimitType.

13.5 limitInfo, limitType and embedType member functions

Only limitInfo overrides base class instances of these routines. NestedEmbedNormalElement::limitInfo computes the new types of limits and does most of the computation of computing limitType. See Table 68 for a description of this and sections 11.3 and 11.4 for more about all these routines.

13.6 limitOrd member function

As described in Section 11.6

NestedEmbedNormalElement::limitOrd extends the idea of limitElement as indirectly enumerating all smaller ordinals. It does this in a limited way for ordinals that are not recursive by using ordinal notations (including those yet to be defined) as arguments in place of the integer arguments of limitElement. By defining recursive operations on an incomplete domain we can retain something of the flavor of limitElement since: \(\alpha = \bigcup_\beta : \alpha.\text{isValidLimitOrdParam}(\beta) \alpha.\text{limitOrd}(\beta) \) and \(\alpha.\text{isValidLimitOrdParam}(\beta) \rightarrow \beta < \alpha \).

Table 82 gives the logic of NestedEmbedNormalElement::limitOrd along with the type of limit designated by LimitInfoType and the exit code used in debugging. Table 65 gives examples for each exit code. Table 84 gives values of \texttt{enum LimitInfoType} used by limitOrd in a case statement along with examples. Usually limitOrd is simpler than limitElement because it adds its argument as a \([\eta]\) or \([[\eta]]\) parameter to an existing parameter. Sometimes it must also decrement a successor ordinal and incorporate this in the result. The selection of which parameter(s) to modify is largely determined by a case statement on LimitInfoType. There are some additional examples in Table 67.

13.7 fixedPoint member function

The algorithm is similar to that in AdmisNormalElement::fixedPoint in Section 11.7. The two differences are that this

\texttt{static function accepts parameter a NestedEmbeddings instead of Embeddings and it has a final reference to a pointer to an ordinal that is used to return the value of the fixed point if one is found i.e. if true is returned.}

14 Philosophical Issues

This approach to the ordinals has its roots in a philosophy of mathematical truth that rejects the Platonistic ideal of completed infinite totalities[5, 4]. It replaces the impredictivity inherent in that philosophy with explicit incompleteness. It is a philosophy that interprets Cantor’s proof that the reals are not countable as the first major incompleteness theorem. Cantor proved that any formal system that meets certain minimal requirements must be incomplete,
\(\alpha \) is a notation for expression 29 with \(\eta = 0 \):

\[
\left[\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m \right] \omega_\kappa \text{ or } \left[\Delta_m \right] \omega_\kappa
\]

See tables 75 and 51 for symbol definitions.

<table>
<thead>
<tr>
<th>X</th>
<th>Info</th>
<th>(\alpha).limitOrd((\zeta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOA</td>
<td>indexCKlimit</td>
<td>\left[\delta_1 \sigma_1, \delta_2 \sigma_2, \ldots, \delta_m \sigma_m \right] \omega_\kappa, loa((\zeta))</td>
</tr>
<tr>
<td>NOB</td>
<td>leastIndexLimit</td>
<td>\left[\delta_1 \sigma_1, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m \sigma_m, loa((\zeta)) \right] \omega_\kappa</td>
</tr>
<tr>
<td>NOC</td>
<td>leastLevelLimit</td>
<td>\left[\delta_1 \sigma_1, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m \sigma_m, loa((\zeta)) \right] \omega_\delta_m, loa((\zeta))</td>
</tr>
<tr>
<td>NOD</td>
<td>leastLevelLimitParam</td>
<td>\left[\delta_1 \sigma_1, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m \sigma_m \right] \omega_\kappa(\beta_1 - 1); Rtn \left[\delta_1 \sigma_1, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m \sigma_m, loa((\zeta)) \right] \omega_\delta_m, loa((\zeta)), h lp1</td>
</tr>
<tr>
<td>NOF</td>
<td>leastIndexLimitParam</td>
<td>\left[\delta_1 \sigma_1, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m \sigma_m \right] \omega_\kappa(\beta_1 - 1); Rtn \left[\delta_1 \sigma_1, \ldots, \delta_{m-1} \sigma_{m-1}, \delta_m \sigma_m, loa((\zeta)) \right] \omega_\kappa, b, lp1</td>
</tr>
<tr>
<td>NOG</td>
<td>paramLimit</td>
<td>AdmisNormalElement::limitElementCom(n)</td>
</tr>
<tr>
<td></td>
<td>paramNxtLimit</td>
<td>See Table 64.</td>
</tr>
<tr>
<td></td>
<td>functionLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>functionNxtLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>drillDownLimit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indexCKsuccEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indexCKLimitEmbed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indexCKLimitParamUn</td>
<td></td>
</tr>
</tbody>
</table>

Table 82: NestedEmbedNormalElement::limitOrd cases

because it can always be expanded by consistently adding more real numbers to it. This can be done, from outside the system, by a Cantor diagonalization of the reals definable within the system.

Because of mathematics’ inherent incompleteness, it can always be expanded. Thus it is consistent but, I suspect, incorrect to reason as if completed infinite totalities exist. This does not mean that an algebra of infinities or infinitesimals is not useful. As long as they get the same results as reasoning about the potentially infinite they may be of significant practical value.

The names of all the reals provably definable in any finite (or recursively enumerable) formal system must be recursively enumerable, as Löwenheim and Skolem observed in the theorem that bears their names. Thus one can consistently assume the reals in a consistent formal system that meets other requirements form a completed totality, albeit one that is not recursively enumerable within the system.

The current philosophical approach to mathematical truth has been enormously successful. This is the most powerful argument in support of it. However, I believe the approach, that was so successful in the past, is increasingly becoming a major obstacle to mathematical progress. If mathematics is about completed infinite totalities, then computer technology is of limited value in expanding the foundations. For computers are restricted to finite operations in contrast to the supposed human ability to transcend the finite through pure thought and mathematical intuition. Thus the foundations of mathematics is perhaps the only major scientific field where computers are not an essential tool for research. An ultimate goal of
X is an exit code (see Table 82). upX is a higher level exit code from a calling routine.

<table>
<thead>
<tr>
<th>X</th>
<th>UpX</th>
<th>α</th>
<th>β</th>
<th>α.limitOrd(β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[2,5,\omega,\omega_5]$</td>
<td>ω</td>
<td>$[2,5,\omega,\omega_5[\omega]+\omega_4$</td>
</tr>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[\omega_{12}+1,\omega_{15}]$</td>
<td>ω_1</td>
<td>$[\omega_{12}+1,\omega_{15}]\omega_{12+1}[\omega_1]+\omega_{15}$</td>
</tr>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[\omega_{12}+1,\omega_{15}]$</td>
<td>$\omega_1+\omega$</td>
<td>$[\omega_{12}+1,\omega_{15}]\omega_{12+1}[\omega_1+\omega]+\omega_{15}$</td>
</tr>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[2,5,\omega_{12}]$</td>
<td>ω</td>
<td>$[2,5,\omega_{12}[\omega]+5$</td>
</tr>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[2,5,\omega,\omega_5]$</td>
<td>ω</td>
<td>$[2,5,\omega,\omega_5[\omega]+\omega_4$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[3,4,\omega,\omega_4]$</td>
<td>ω</td>
<td>$[3,4,\omega_4[\omega]+\omega_4$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[3,56,5,7,8,\omega_8]$</td>
<td>ω_1</td>
<td>$[3,56,5,7,8,\omega_8[\omega]+\omega_8$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[3,56,5,7,8,\omega_8]$</td>
<td>$\omega_1+\omega$</td>
<td>$[3,56,5,7,8,\omega_8[\omega_1+\omega]+\omega_8$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[3,56,5,7,8,\omega_8]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[3,56,5,7,8,\omega_8[\omega_1+\omega+12]+\omega_8$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[4,4,\omega,\omega_4]$</td>
<td>ω</td>
<td>$[4,4,\omega_4[\omega]+\omega_4$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[12,5,12,\omega_{12}]$</td>
<td>ω_1</td>
<td>$[12,5,12,\omega_{12}[\omega]+\omega_{12}$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[12,5,12,\omega_{12}]$</td>
<td>$\omega_1+\omega$</td>
<td>$[12,5,12,\omega_{12}[\omega_1+\omega]+\omega_{12}$</td>
</tr>
<tr>
<td>NOB</td>
<td>NOG</td>
<td>$[12,5,12,\omega_{12}]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[12,5,12,\omega_{12}[\omega_1+\omega+12]+\omega_{12}$</td>
</tr>
<tr>
<td>NOC</td>
<td>NOG</td>
<td>$[3,\omega,\omega_2]$</td>
<td>ω</td>
<td>$[3,\omega_2[\omega]+\omega_2[\omega]]$</td>
</tr>
<tr>
<td>NOC</td>
<td>NOG</td>
<td>$[3,\omega,\omega_2]$</td>
<td>ω_1</td>
<td>$[3,\omega_2[\omega_1]+\omega_2[\omega]]$</td>
</tr>
<tr>
<td>NOC</td>
<td>NOG</td>
<td>$[3,\omega,\omega_2]$</td>
<td>$\omega_1+\omega$</td>
<td>$[3,\omega_2[\omega_1+\omega]+\omega_2[\omega]+\omega]$</td>
</tr>
<tr>
<td>NOC</td>
<td>NOG</td>
<td>$[3,\omega,\omega_2]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[3,\omega_2[\omega_1+\omega+12]+\omega_2[\omega]+\omega]$</td>
</tr>
<tr>
<td>LOF</td>
<td>NOG</td>
<td>$[3,1,5]$</td>
<td>ω_1</td>
<td>$[3,1,5[\omega_1]+3$</td>
</tr>
<tr>
<td>LOF</td>
<td>NOG</td>
<td>$[3,1,5]$</td>
<td>$\omega_1+\omega$</td>
<td>$[3,1,5[\omega_1+\omega]+\omega_1+\omega]$</td>
</tr>
<tr>
<td>LOF</td>
<td>NOG</td>
<td>$[3,1,5]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[3,1,5[\omega_1+\omega+12]+\omega_1+\omega]$.</td>
</tr>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[3]$</td>
<td>ω_1</td>
<td>$[3]_2[\omega_1]+3$</td>
</tr>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[3]$</td>
<td>$\omega_1+\omega$</td>
<td>$[3]_2[\omega_1+\omega]+3$</td>
</tr>
<tr>
<td>LOD</td>
<td>NOG</td>
<td>$[3]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[3]_2[\omega_1+\omega+12]+3$</td>
</tr>
<tr>
<td>LOF</td>
<td>NOG</td>
<td>$[4]$</td>
<td>ω_1</td>
<td>$[4]_2[\omega_1]+3$</td>
</tr>
<tr>
<td>LOF</td>
<td>NOG</td>
<td>$[4]$</td>
<td>$\omega_1+\omega$</td>
<td>$[4]_2[\omega_1+\omega]+3$</td>
</tr>
<tr>
<td>LOF</td>
<td>NOG</td>
<td>$[4]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[4]_2[\omega_1+\omega+12]+3$</td>
</tr>
<tr>
<td>LOA</td>
<td>NOG</td>
<td>$[4]$</td>
<td>ω_1</td>
<td>$[4]_2[\omega_1]+3$</td>
</tr>
<tr>
<td>LOA</td>
<td>NOG</td>
<td>$[4]$</td>
<td>$\omega_1+\omega$</td>
<td>$[4]_2[\omega_1+\omega]+3$</td>
</tr>
<tr>
<td>LOA</td>
<td>NOG</td>
<td>$[4]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[4]_2[\omega_1+\omega+12]+3$</td>
</tr>
<tr>
<td>OBF</td>
<td>NOG</td>
<td>$[4,1,5]$</td>
<td>ω_1</td>
<td>$[4,1,5][\omega_1]+1$</td>
</tr>
<tr>
<td>OBF</td>
<td>NOG</td>
<td>$[4,1,5]$</td>
<td>$\omega_1+\omega$</td>
<td>$[4,1,5][\omega_1+\omega]+1$</td>
</tr>
<tr>
<td>OBF</td>
<td>NOG</td>
<td>$[4,1,5]$</td>
<td>$\omega_1+\omega+12$</td>
<td>$[4,1,5][\omega_1+\omega+12]+1$</td>
</tr>
</tbody>
</table>

Table 83: NestedEmbedNormalElement::limitOrd examples
this research is to help to change that perspective and the practical reality of foundations research in mathematics.

Since all ordinals beyond the integers are infinite they do not correspond to anything in the physical world. Our idea of all integers comes from the idea that we can define what an integer is. The property of being an integer leads to the idea that there is a set of all integers satisfying the property. An alternative way to think of the integers is computationally. We can write a computer program that can in theory output every integer. Of course real programs do not run forever, error free, but that does not mean that such potentially infinite operations as a computer running forever lack physical significance. Our universe appears to be extraordinarily large, but finite. However, it might be potentially infinite. Cosmology is of necessity a speculative science. Thus the idea of a potentially infinite set of all integers, in contrast to that of completed infinite totalities, might have objective meaning in physical reality. Most of standard mathematics has an interpretation in an always finite universe, but some questions, such as the continuum hypothesis and other similar foundations questions are objectively true or false as Solomon Feferman and others have suggested [15].

Appendix A is a first attempt at translating these ideas into a restricted formalization of ZF. This appendix provides additional discussion of the philosophy underlying this approach.

Subsets of the integers are the G"odel numbers of TMs that satisfy a logically determined property.
A Formalizing objective mathematics

A.1 Introduction

Objective mathematics attempts to distinguish between statements that are objectively
true or false and those that are only true, false or undecidable relative to a particular
formal system. This distinction is based on the assumption of an always finite but perhaps
potentially infinite universe76. This is a return to the earlier conception of mathematical
infinity as a potential that can never be realized. This is not to ignore the importance and
value of the algebra of the infinite that has grown out of Cantor’s approach to mathematical
infinity. It does suggest a reinterpretation of those results in terms of the countable models
implied by the Löwenheim-Skolem theorem. It also suggests approaches for expanding the
foundations of mathematics that include using the computer as a fundamental research tool.
These approaches may be more successful at gaining wide spread acceptance than large
cardinal axioms which are far removed from anything physically realizable.

A.1.1 The mathematics of recursive processes

A core idea is that only the mathematics of finite structures and properties of recursive
processes is objective. This does not include uncountable sets, but it does include much
of mathematics including some statements that require quantification over the reals[5]. For
example, the question of whether a recursive process defines a notation for a recursive ordinal
requires quantification over the reals to state but is objective.

Loosely speaking objective properties of recursive processes are those logically determined
by a recursively enumerable sequence of events. This cannot be precisely formulated, but one
can precisely state which set definitions in a formal system meet this criteria (see Section A.7).

The idea of objective mathematics is closely connected to generalized recursion theory.
The latter starts with recursive relations and expands these with quantifiers over the integers
and reals. As long as the relations between the quantified variable are recursive, the events
that logically determine the result are recursively enumerable.

A.1.2 The uncountable

It is with the uncountable that contemporary set theory becomes incompatible with infinity
as a potential that can never be realized. Proving something is true for all entities that meet
some property does not require that a collection of all objects that satisfy that property exists.
Real numbers exist as potentially infinite sequences that are either recursively enumerable
or defined by a non computable, but still logically determined, mathematical expression.
The idea of the collection of all reals is closely connected with Cantor’s proof that the reals
are not countable. For that proof to work reals must exist as completed infinite decimal
expansions or some logically equivalent structure. This requires infinity as an actuality and
not just a potential.

76A potentially infinite universe is one containing a finite amount of information at any point in time but
with unbounded growth over time in its information content.
This appendix is a first attempt to formally define which statements in Zermelo Frankel set theory (ZF)\cite{10} are objective. The goal is not to offer a weaker alternative. ZF has an objective interpretation in which all objective questions it decides are correctly decided. The purpose is to offer a new interpretation of the theory that seems more consistent with physical reality as we know it. This interpretation is relevant to extending mathematics. Objective questions have a truth value independent of any formal system. If they are undecidable in existing axiom systems, one might search for new axioms to decide them. In contrast there is no basis on which relative questions, like the continuum hypothesis, can be objectively decided.

A.1.3 Expanding the foundations of mathematics

Defining objective mathematics may help to shift the focus for expanding mathematics away from large cardinal axioms. Perhaps in part because they are not objective, it has not been possible to reach consensus about using these to expand mathematics. An objective alternative is to expand the hierarchy of recursive and countable ordinals by using computers to deal with the combinatorial explosion that results\cite{8}.

Throughout the history of mathematics, the nature of the infinite has been a point of contention. There have been other attempts to make related distinctions. Most notable is intuitionism stated by Brouwer\cite{2}. These approaches can involve (and intuitionism does involve) weaker formal systems that allow fewer questions to be decidable and with more difficult proofs. Mathematicians consider Brouwer’s approach interesting and even important but few want to be constrained by its limitations. A long term aim of the approach of this appendix is to define a formal system that is widely accepted and is stronger than ZF in deciding objective mathematics.

A.2 Background

The most widely used formalization of mathematics, Zermelo Frankel set theory plus the axiom of choice (ZFC)\cite{10}, gives the same existential status to every object from the empty set to large cardinals. Finite objects and structures can exist physically. As far as we know this is not true of any infinite objects. Our universe could be potentially infinite but it does not seem to harbor actual infinities.

This disconnect between physical reality and mathematics has long been a point of contention. One major reason it has not been resolved is the power of the existing mathematical framework to solve problems that are relevant to a finite but potentially infinite universe and that cannot be solved by weaker systems. A field of mathematics has been created, called reverse mathematics, to determine the weakest formal system that can solve specific problems. There are problems in objective mathematics that have been shown to be solvable only by using large cardinal axioms that extend ZF. This however has not resulted in widespread acceptance of such axioms. For one thing there are weaker axioms (in terms of definability) that could solve these problems. There do not exist formal systems limited to objective mathematics that include such axioms\footnote{Axioms that assert the existence of large recursive ordinals can provide objective extensions to objective formalizations of mathematics. Large cardinal axioms imply the existence of large recursive ordinals that...}.
they require. Large cardinal axioms are a simpler and more elegant way to accomplish the same result, but one can prove that alternatives exist. Mathematics can be expanded at many levels in the ordinal hierarchy. Determining the minimal ordinal that decides some question is different from determining the minimum formal system that does so.

A.2.1 The ordinal hierarchy

Ordinal numbers generalize induction on the integers. As such they form the backbone of mathematics. Every integer is an ordinal. The set of all integers, \(\omega \), is the smallest infinite ordinal. There are three types of ordinals: 0 (or the empty set), successors and limits. \(\omega \) is the first limit ordinal. The successor of an ordinal is defined to be the union of the ordinal with itself. Thus for any two ordinals \(a \) and \(b \), \(a < b \Leftrightarrow a \in b \). This is very convenient, but it masks the rich combinatorial structure required to define finite ordinal notations and the rules for manipulating them.

From an objective standpoint it is more useful to think of ordinals as properties of recursive processes. The recursive ordinals are those whose structure can be enumerated by a recursive process. For any recursive ordinal, \(R \), one can define a unique sequence of finite symbols (a notation) to represent each ordinal \(\leq R \). For these notations one can define a recursive process that evaluates the relative size of any two notations and a recursive process that enumerates the notations for all ordinals smaller than that represented by any notation.

Starting with the recursive ordinals there are many places where the hierarchy can be expanded. It appears that the higher up the ordinal hierarchy one works, the stronger the results that can be obtained for a given level of effort. However, I suspect, and history suggests, that the strongest results will ultimately be obtained by working out the details at the level of recursive and countable ordinals. These are the objective levels.

A.3 The true power set

Going beyond the countable ordinals with the power set axiom moves beyond objective mathematics. No formal system can capture what mathematicians want to mean by the true power set of the integers or any other uncountable set. This follows from Cantor’s proof that the reals are not countable and the Löwenheim-Skolem theorem that established that every formal system that has a model must have a countable model. The collection of all the subsets of the integers provably definable in ZF is countable. Of course it is not countable within ZF. The union of all sets provably definable by any large cardinal axiom defined now or that ever can be defined in any possible finite formal system is countable. One way some mathematicians claim to get around this is to say the true ZF includes an axiom for every true real number asserting its existence. This is a bit like the legislator who wanted to pass a law that \(\pi \) is \(3 \frac{1}{7} \). You can make the law but you cannot enforce it.

My objections to ZF are not to the use of large cardinal axioms, but to some of the philosophical positions associated with them and the practical implications of those positions[4].

\[\text{can solve many of the problems currently only solvable with large cardinals. However, deriving explicit formulations of the recursive ordinals provably definable in ZF alone is a task that has yet to be completed. With large cardinal axioms one implicitly defines larger recursive ordinals than those provably definable in ZF.} \]
Instead of seeing formal systems for what they are, recursive processes for enumerating theorems, they are seen by some as transcending the finite limits of physical existence. In the Platonic philosophy of mathematics, the human mind transcends the limitations of physical existence with direct insight into the nature of the infinite. The infinite is not a potential that can never be realized. It is a Platonic objective reality that the human mind, when properly trained, can have direct insight into.

This raises the status of the human mind and, most importantly, forces non mental tools that mathematicians might use into a secondary role. This was demonstrated when a computer was used to solve the long standing four color problem because of the large number of special cases that had to be considered. Instead of seeing this as a mathematical triumph that pointed the way to leveraging computer technology to aid mathematics, there were attempts to delegitimize this approach because it went beyond what was practical to do by human mental capacity alone.

Computer technology can help to deal with the combinatorial explosion that occurs in directly developing axioms for large recursive ordinals[8]. Spelling out the structure of these ordinals is likely to provide critical insight that allows much larger expansion of the ordinal hierarchy than is possible with the unaided human mind even with large cardinal axioms. If computers come to play a central role in expanding the foundations of mathematics, it will significantly alter practice and training in some parts of mathematics.

A.4 Mathematical Objects

In the philosophical framework of this appendix there are three types of mathematical ‘objects’:

1. finite sets,
2. properties of finite sets and
3. properties of properties.

Finite sets are abstract idealizations of what can exist physically.

Objective properties of finite sets, like being an even integer, are logically determined human creations. Whether a particular finite set has the property follows logically from the definition of the property. However, the property can involve questions that are logically determined but not determinable. One example is the set of Gödel numbers of Turing Machines (TM) that do not halt. What the TM does at each time step is logically determined and thus so is the question of whether it will halt, but, if it does not halt, there is no general way to determine this. The non-halting property is objectively determined but not in general determinable.

There is overwhelming evidence that one can create a Universal Turing Machine that can simulate every possible computer. Assuming this is true, one can assign a unique integer to every possible program for this universal computer. This is called a Gödel number because Gödel invented this idea in a different, but related, context a few years before the concept of a Universal Turing Machine was proposed.
A.4.1 Properties of properties

The property of being a subset of the integers has led to the idea that uncountable collections exist. No finite or countable formal system can capture what mathematicians want to mean by the set of all subsets of the integers. One can interpret this as the human mind transcending the finite or that mathematics is a human creation that can always be expanded. The inherent incompleteness of any sufficiently strong formal system similarly suggests that mathematics is creative.

A.4.2 Gödel and mathematical creativity

Gödel proved that any formalization of mathematics strong enough to embed the primitive recursive functions (or alternatively a Universal Turing Machine) must be either incomplete or inconsistent[13]. In particular such a system, will be able to model itself, and will not be able to decide if this model of itself is consistent unless it is inconsistent.

This is often seen as putting a limit on mathematical knowledge. It limits what we can be certain about in mathematics, but not what we can explore. A divergent creative process can, in theory, pursue every possible finite formalization of mathematics as long as it does not have to choose which approach or approaches are correct. Of course it can rule out those that are discovered to be inconsistent or to have other provable flaws. This may seem to be only of theoretical interest. However the mathematically capable human mind is the product of just such a divergent creative process known as biological evolution.

A.4.3 Cantor’s incompleteness proof

One can think of Cantor’s proof (when combined with the Löwenheim-Skolem theorem) as the first great incompleteness proof. He proved the properties defining real numbers can always be expanded. The standard claim is that Cantor proved that there are “more” reals than integers. That claim depends on each real existing as a completed infinite totality. From an objective standpoint, Cantor’s proof shows that any formal system that meets certain prerequisites can be expanded by diagonalizing the real numbers provably definable within the system. Of course this can only be done from outside the system.

Just as one can always define more real numbers one can always create more objective mathematics. One wants to include as objective all statements logically determined by a recursively enumerable sequence of events, but that can only be precisely defined relative to a particular formal system and will always be incomplete and expandable just as the reals are.

A.5 Axioms of ZFC

The formalization of objectivity starts with the axioms of Zermelo Frankel Set Theory plus the axiom of choice ZFC, the most widely used formalization of mathematics. This is not the ideal starting point for formalizing objective mathematics but it is the best approach to clarify where in the existing mathematical hierarchy objective mathematics ends. To that end a restricted version of these axioms will be used to define an objective formalization of mathematics.
The following axioms are adapted from *Set Theory and the Continuum Hypothesis*\(^79\).

A.5.1 Axiom of extensionality

Without the axiom that defines when two sets are identical (=) there would be little point in defining the integers or anything else. The axiom of extensionality says sets are uniquely defined by their members.

\[
\forall x \forall y \ (\forall z \ z \in x \equiv z \in y) \equiv (x = y)
\]

This axiom\(^80\) says a pair of sets \(x\) and \(y\) are equal if and only if they have exactly the same members.

A.5.2 Axiom of the empty set

The empty set must be defined before any other set can be defined.

The axiom of the empty set is as follows.

\[
\exists x \forall y \
eg (y \in x)
\]

This axiom\(^81\) says there exists an object \(x\) that no other set belongs to. \(x\) contains nothing. The empty set is denoted by the symbol \(\emptyset\).

A.5.3 Axiom of unordered pairs

From any two sets \(x\) and \(y\) one can construct a set that contains both \(x\) and \(y\). The notation for that set is \(\{x, y\}\).

\[
\forall x \forall y \exists z \forall w \ w \in z \equiv (w = x \lor w = y)
\]

This says for every pair of sets \(x\) and \(y\) there exists a set \(w\) that contains \(x\) and \(y\) and no other members. This is written as \(w = x \cup y\).

A.5.4 Axiom of union

A set is an arbitrary collection of objects. The axiom of union allows one to combine the objects in many different sets and make them members of a single new set. It says one can go down two levels taking not the members of a set, but the members of members of a set and combine them into a new set.

\[
\forall x \exists y \forall z \ z \in y \equiv (\exists t \ z \in t \land t \in x)
\]

\(^79\)The axioms use the existential quantifier (\(\exists\)) and the universal quantifier (\(\forall\)). \(\exists x g(x)\) means there exists some set \(x\) for which \(g(x)\) is true. Here \(g(x)\) is any expression that includes \(x\). \(\forall x g(x)\) means \(g(x)\) is true of every set \(x\).

\(^80\)\(a \equiv b\) means \(a\) and \(b\) have the same truth value or are equivalent. They are either both true or both false. It is the same as \((a \rightarrow b) \land (b \rightarrow a)\).

\(^81\)The ‘\(-\)’ symbol says what follow is not true.
This says for every set \(x \) there exists a set \(y \) that is the union of all the members of \(x \). Specifically, for every \(z \) that belongs to the union set \(y \) there must be some set \(t \) such that \(t \) belongs to \(x \) and \(z \) belongs to \(t \).

A.5.5 Axiom of infinity

The integers are defined by an axiom that asserts the existence of a set \(\omega \) that contains all the integers. \(\omega \) is defined as the set containing 0 and having the property that if \(n \) is in \(\omega \) then \(n + 1 \) is in \(\omega \). From any set \(x \) one can construct a set containing \(x \) by constructing the unordered pair of \(x \) and \(x \). This set is written as \(\{x\} \).

\[
\exists x \emptyset \in x \land \forall y (y \in x \rightarrow (y \cup \{y\} \in x))
\]

This says there exists a set \(x \) that contains the empty set \(\emptyset \) and for every set \(y \) that belongs to \(x \) the set \(y + 1 \) constructed as \(y \cup \{y\} \) also belongs to \(x \).

The axiom of infinity implies the principle of induction on the integers.

A.5.6 Axiom scheme of replacement

The axiom scheme for building up complex sets like the ordinals is called replacement. They are an easily generated recursively enumerable infinite sequence of axioms.

The axiom of replacement scheme describes how new sets can be defined from existing sets using any relationship \(A_n(x, y) \) that defines \(y \) as a function of \(x \). A function maps any element in its range (any input value) to a unique result or output value.

\(\exists! y \ g(y) \) means there exists one and only one set \(y \) such that \(g(y) \) is true. The axiom of replacement scheme is as follows.

\[
B(u, v) \equiv \forall y (y \in v \equiv \exists x [x \in u \land A_n(x, y)])
\]

\[
[\forall x \exists! y A_n(x, y)] \rightarrow \forall u \exists v (B(u, v))
\]

That first line defines \(B(u, v) \) as equivalent to \(y \in v \) if and only if there exists an \(x \in u \) such that \(A_n(x, y) \) is true. One can think of \(A_n(x, y) \) as defining a function that may have multiple values for the same input. \(B(u, v) \) says \(v \) is the image of \(u \) under this function.

This second line says if \(A_n \) defines \(y \) uniquely as a function of \(x \) then the for all \(u \) there exists \(v \) such that \(B(u, v) \) is true.

This axioms says that, if \(A_n(x, y) \) defines \(y \) uniquely as a function of \(x \) then one can take any set \(u \) and construct a new set \(v \) by applying this function to every element of \(u \) and taking the union of the resulting sets.

This axiom schema came about because previous attempts to formalize mathematics were too general and led to contradictions like the Barber Paradox\(^{82}\). By restricting new sets to those obtained by applying well defined functions to the elements of existing sets it was felt that one could avoid such contradictions. Sets are explicitly built up from sets defined in safe axioms. Sets cannot be defined as the universe of all objects satisfying some relationship. One cannot construct the set of all sets which inevitably leads to a paradox.

\(^{82}\) The barber paradox concerns a barber who shaves everyone in the town except those who shave themselves. If the barber shaves himself then he must be among the exceptions and cannot shave himself. Such a barber cannot exist.
A.5.7 Power set axiom

The power set axiom says the set of all subsets of any set exists. This is not needed for finite sets, but it is essential to define the set of all subsets of the integers.

\[\forall x \exists y \forall z [z \in y \equiv z \subseteq x] \]

This says for every set \(x \) there exists a set \(y \) that contains all the subsets of \(x \). \(z \) is a subset of \(x \) \((z \subseteq x)\) if every element of \(z \) is an element of \(x \).

The axiom of the power set completes the axioms of ZF or Zermelo Frankel set theory. From the power set axiom one can conclude that the set of all subsets of the integers exists. From this set one can construct the real numbers.

This axioms is necessary for defining recursive ordinals which is part of objective mathematics. At the same time it allows for questions like the continuum hypothesis that are relative. Drawing the line between objective and relative properties is tricky.

A.5.8 Axiom of Choice

The Axiom of Choice is not part of ZF. It is however widely accepted and critical to some proofs. The combination of this axiom and the others in ZF is called ZFC.

The axiom states that for any collection of non empty sets \(C \) there exists a choice function \(f \) that can select an element from every member of \(C \). In other words for every \(e \in C \) \(f(e) \in e \).

\[\forall C \exists f \forall e [\forall e \in C, e \neq \emptyset \rightarrow f(e) \in e] \]

A.6 The axioms of ZFC summary

1. Axiom of extensionality (See Section A.5.1).

\[\forall x \forall y \forall z \left[(\forall z \ z \in x \equiv z \in y) \equiv (x = y) \right] \]

2. Axiom of the empty set (See Section A.5.2).

\[\exists x \forall y \neg(y \in x) \]

3. Axiom of unordered pairs (See Section A.5.3).

\[\forall x \forall y \exists z \forall w \ w \in z \equiv (w = x \lor w = y) \]

4. Axiom of union (See Section A.5.4).

\[\forall x \exists y \forall z \ z \in y \equiv (\exists t \ z \in t \land t \in x) \]

5. Axiom of infinity (See Section A.5.5).

\[\exists x \emptyset \in x \land [\forall y (y \in x) \rightarrow (y \cup \{y\} \in x)] \]
6. Axiom schema of replacement (See Section A.5.6).
\[
B(u, v) \equiv [\forall y(y \in v \equiv \exists x[x \in u \land A_n(x, y)]]]
\]

\[
[\forall x \exists !yA_n(x, y)] \rightarrow \forall u \exists v(B(u, v))
\]

7. Axiom of the power set (See Section A.5.7).
\[
\forall x \exists y \forall z[z \in y \equiv z \subseteq x]
\]

8. Axiom of choice (See Section A.5.8).
\[
\forall C \exists f \forall e[(e \in C \land e \neq \emptyset) \rightarrow f(e) \in e]
\]

A.7 The Objective Parts of ZF

Objectivity is a property of set definitions. Its domain is expressions within ZF (or any formalization of mathematics) that define new sets (or other mathematical objects). A set is said to be objective if it can be defined by an objective statement.

The axiom of the empty set and the axiom of infinity are objective. The axiom of unordered pairs and the axiom of union are objective when they define new sets using only objective sets. The power set axiom applied to an infinite set is not objective and it is unnecessary for finite sets.

A limited version of the axiom of replacement is objective. In this version the formulas that define functions (the A_n in this appendix) are limited to recursive relations on the bound variables and objective constants. Both universal and existential quantifiers are limited to ranging over the integers or subsets of the integers. Without the power set axiom, the subsets of the integers do not form a set. However the property of being a subset of the integers
\[
S(x) \equiv \forall y y \in x \rightarrow y \in \omega
\]
can be used to restrict a bound variable.

Quantifying over subsets of the integers suggests searching through an uncountable number of sets. However, by only allowing a recursive relation between bound variables and objective constants, one can enumerate all the events that determine the outcome. A computer program that implements a recursive relationship on a finite number of subsets of the integers must do a finite number of finite tests so the result can be produced in a finite time. A nondeterministic computer program can enumerate all of these results. For example the formula
\[
\forall r S(r) \rightarrow \exists n(n \in \omega \rightarrow a(r, n))
\]

\[83\] In this context nondeterministic refers to a computer that simulates many other computer programs by emulating each of them and switching in time between them in such a way that every program is fully executed. The emulation of a program stops only if the emulated program halts. The programs being emulated must be finite or recursively enumerable. In this context nondeterministic does not mean unpredictable.

159
is determined by what a recursive process does for every finite initial segment of every subset of the integers84. One might think of this approach as a few steps removed from constructivism. One does not need to produce a constructive proof that a set exists. One does need to prove that every event that determines the members of the set is constructible.

A.8 Formalization of the Objective Parts of ZF

Following are axioms that define the objective parts of ZF as outlined in the previous section. The purpose is not to offer a weaker alternative to ZF but to distinguish the objective and relative parts of that system.

A.8.1 Axioms unchanged from ZF

As long as the universe of all sets is restricted to objective sets the following axioms are unchanged from ZF.

1. Axiom of extensionality
 \[
 \forall x \forall y \ (\forall z \ z \in x \equiv z \in y) \equiv (x = y)
 \]

2. Axiom of the empty set
 \[
 \exists x \forall y \ \neg(y \in x)
 \]

3. Axiom of unordered pairs
 \[
 \forall x \forall y \exists z \forall w \ w \in z \equiv (w = x \lor w = y)
 \]

4. Axiom of union
 \[
 \forall x \exists y \forall z \ z \in y \equiv (\exists t \ z \in t \land t \in x)
 \]

5. Axiom of infinity
 \[
 \exists x \emptyset \in x \land [\forall y (y \in x) \rightarrow (y \cup \{y\} \in x)]
 \]

A.8.2 Objective axiom of replacement

In the following A_n is any recursive relation in the language of ZF in which constants are objectively defined and quantifiers are restricted to range over the integers (ω) or be restricted to subsets of the integers. Aside from these restrictions on A_n, the objective active of replacement is the same as it is in ZF.

\[
B(u, v) \equiv [\forall y (y \in v \equiv \exists x [x \in u \land A_n(x, y)])]
\]

\[
[\forall x \exists ! y A_n(x, y)] \rightarrow \forall u \exists v(B(u, v))
\]

84Initial segments of subsets of the integers are ordered and thus defined by the size of the integers.
A.9 An Objective Interpretation of ZFC

I suspect it is consistent to assume the power set axiom in ZF, because all subsets of the integers (and larger cardinals) that are provably definable in ZF form a definite, albeit countable, collection. These are definite collections only relative to a specific formal system. Expand ZF with an axiom like “there exists an inaccessible cardinal” and these collections expand.

Uncountable sets in ZF suggest how the objective parts of ZF can be expanded. Create an explicitly countable definition of the countable ordinals defined by the ordinals that are uncountable within ZF. Expand ZF to ZF+ with axioms that assert the existence of these structures. This approach to expansion can be repeated with ZF+. The procedure can be iterated and it must have a fixed point that is unreachable with these iterations.

Ordinal collapsing functions[3] do something like this. They use uncountable ordinals as notations for recursive ordinals to expand the recursive ordinals. Ordinal collapsing can also use countable ordinals larger than the recursive ordinals. This is possible at multiple places in the ordinal hierarchy. I suspect that uncountable ordinals provide a relatively weak way to expand the recursive and larger countable ordinal hierarchies. The countable ordinal hierarchy is a bit like the Mandelbrot set[26]. The hierarchy definable in any particular formal system can be embedded within itself at many places.

The objective interpretation of ZFC see it as a recursive process for defining finite sets, properties of finite sets and properties of properties. These exist either as physical objects that embody the structure of finite sets or as expressions in a formal language that can be connected to finite objects and/or expressions that define properties. Names of all the objects that provably satisfy the definition of any set in ZF are recursively enumerable because all proofs in any formal system are. These names and their relationships form an interpretation of ZF.

A.10 A Creative Philosophy of Mathematics

Platonic philosophy visualizes an ideal realm of absolute truth and beauty of which the physical world is a dim reflection. This ideal reality is perfect, complete and thus static. In stark contrast, the universe we inhabit is spectacularly creative. An almost amorphous cosmic big bang has evolved into an immense universe of galaxies each of which is of a size and complexity that takes ones breath away. On at least one minuscule part of one of the these galaxies, reproducing molecules have evolved into the depth and richness of human conscious experience. There is no reason to think that we at a limit of this creative process. There may be no finite limit to the evolution of physical structure and the evolution of consciousness. This is what the history of the universe, this planet and the facts of mathematics suggest to me. We need a new philosophy of mathematics grounded in our scientific understanding and the creativity that mathematics itself suggests is central to both developing mathematics and the content created in doing do.

Mathematics is both objective and creative. If a TM runs forever, this is logically determined by its program. Yet it takes creativity to develop a mathematical system to prove this. Gődel proved that no formal system that is sufficiently strong can be complete, but there is nothing (except resources) to prevent an exploration over time of every possible formalization of mathematics. As mentioned earlier, it is just such a process that created
the mathematically capable human mind. The immense diversity of biological evolution was probably a necessary prerequisite for evolving that mind.

Our species has a capacity for mathematics as a genetic heritage. We will eventually exhaust what we can understand from exploiting that biological legacy through cultural evolution. This exhaustion will not occur as an event but a process that keeps making progress. However there must be a Gödel limit to the entire process even if it continues forever. Following a single path of mathematical development will lead to an infinite sequence of results all of which are encompassed in a single axiom that will never be explored. This axiom will only be explored if mathematics becomes sufficiently diverse. In the long run, the only way to avoid a Gödel limit to mathematical creativity is through ever expanding diversity.

There is a mathematics of creativity that can guide us in pursuing diversity. Loosely speaking the boundary between the mathematics of convergent processes and that of divergent creative processes is the Church-Kleene ordinal or the ordinal of the recursive ordinals. For every recursive ordinal \(r_0 \) there is a recursive ordinal \(r_1 \) such that there are halting problems decidable by \(r_1 \) and not by any smaller ordinal. In turn every halting problem is decidable by some recursive ordinal. The recursive ordinals can decide the objective mathematics of convergent or finite path processes. Larger countable ordinals define a mathematics of divergent processes, like biological evolution, that follow an ever expanding number of paths\(^{85}\).

The structure of biological evolution can be connected to a divergent recursive process. To illustrate this consider a TM that has an indefinite sequence of outputs that are either terminal nodes or the Gödel numbers of other recursive processes. In the latter case the TM that corresponds to the output must have its program executed and its outputs similarly interpreted. A path is a sequence of integers that corresponds to the output index at each level in the simulation hierarchy. For example the initial path segment \((4,1,3)\) indexes a path that corresponds to the fourth output of the root TM \(r_4 \), the first output of \(r_4 \) \(r_{4,1} \) and the third output of \(r_{4,1} \) \(r_{4,1,3} \). These paths have the structure of the tree of life that shows what species were descended from which other species.

Questions about divergent recursive processes can be of interest to inhabitants of an always finite but potentially infinite universe. For example one might want to know if a given species will evolve an infinite chain of descendant species. In a deterministic universe, this problem can be stated using divergent recursive processes to model species. We evolved through a divergent creative process that might or might not be recursive. Quantum mechanics implies that there are random perturbations, but that may not be the final word.

Even with random perturbations, questions about all the paths a divergent recursive process can follow, may be connected to biological and human creativity. Understanding these processes may become increasingly important in the next few decades as we learn to control and direct biological evolution. Today there is intense research on using genetic engineering to cure horrible diseases. In time these techniques will become safe, reliable and predictable. The range of applications will inevitably expand. At that point it will become

\(^{85}\)In a finite universe there are no truly divergent processes. Biological evolution can be truly divergent only if our universe is potentially infinite and life on earth migrates to other planets, solar systems and eventually galaxies.
extremely important to have as deep an understanding as possible of what we may be doing. To learn more about this see[4].

B Command line interface

This appendix is a stand alone manual for a command line interface to most of the capabilities described in this document.

B.1 Introduction

The Ordinal Calculator is an interactive tool for understanding the hierarchies of recursive and countable ordinals[35, 27, 18]. It is also a research tool to help to expand these hierarchies. Its motivating goal is ultimately to expand the foundations of mathematics by using computer technology to manage the combinatorial explosion in complexity that comes with explicitly defining the recursive ordinals implicitly defined by the axioms of Zermelo-Frankel set theory[10, 4]. The underlying philosophy focuses on what formal systems tell us about physically realizable combinatorial processes[5].

The source code and documentation is licensed for use and distribution under the Gnu General Public License, Version 2, June 1991 and subsequent versions. A copy of this license must be distributed with the program. It is also at:

Most of this manual is automatically extracted from the online documentation.

This is a command line interactive interface to a program for exploring the ordinals. It supports recursive ordinals through and beyond the Veblen hierarchy[35]. It defines notations for the Church-Kleene ordinal (the ordinal of the recursive ordinals) and some larger countable ordinals. They are used in a form of ordinal collapsing to define large recursive ordinals.

B.2 Command line options

The standard name for the ordinal calculator is ord. Typing ord (or ./ord) ENTER will start ord in command line mode on most Unix or Linux based systems. The command line options are mostly for validating or documenting ord. They are:

‘cmd’ — Read specified command file and enter command line mode.
‘cmdTex’ — Read specified command file and enter TeX command line mode.
‘version’ — Print program version.
‘help’ — Describe command line options.
‘cmdDoc’ — Write manual for command line mode in TeX format.
‘tex’ — Output TeX documentation files.
‘psi’ — Do tests of Veblen hierarchy.
‘base’ — Do tests of base class Ordinal.
‘try’ — Do tests of class FiniteFuncOrdinal.
‘gamma’ — Test for consistent use of gamma and epsilon.
‘iter’ — Do tests of class IterFuncOrdinal.
‘admis’ — Do tests of class AdmisLevOrdinal.
‘admis2’ — Do additional tests of class AdmisLevOrdinal.
‘play’ — Do integrating tests.
‘descend’ — Test descending trees.
‘collapse’ — Ordinal collapsing tests.
‘nested’ — Ordinal nested collapsing tests.
‘nested2’ — Ordinal nested collapsing tests 2.
‘nested3’ — Ordinal nested collapsing tests 3.
‘exitCode’ — LimitElement exit code base test.
‘exitCode2’ — LimitElement exit code base test 2.
‘limitEltExitCode’ — Admissible level LimitElement exit code test 0.
‘limitEltExitCode1’ — Admissible level limitElement exit code test 1.
‘limitEltExitCode2’ — Admissible level limitElement exit code test 2.
‘limitEltExitCode3’ — Admissible level limitElement exit code test 3.
‘limitOrdExitCode’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode1’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode2’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode3’ — Admissible level limitOrd exit code test.
‘admisLimitElementExitCode’ — Admissible level limitElement exit code test.
‘admisDrillDownLimitExitCode’ — Admissible level drillDownLimitElement exit code test.
‘admisDrillDownLimitComExitCode’ — Admissible level drillDownLimitElementCom exit code test.
‘admisLimitElementComExitCode’ — Admissible level exit code test for limitElmentCom.
‘admisExamples’ — Admissible level tests of examples.
‘nestedLimitEltExitCode’ — Nested level limitElement exit code test.
‘nestedLimitEltExitCode2’ — Nested level limitElement exit code test 2.
‘nestedBaseLimitEltExitCode’ — Nested level base class limit exit code test.
‘nestedLimitOrdExitCode’ — Nested level limitOrd exit code test.
‘nestedCmpExitCode’ — Nested level compare exit code test.
‘nestedEmbedNextLeast’ — Nested embed next least test.
‘transition’ — Admissible level transition test.
‘cmpExitCode’ — Admissible level compare exit code test.
‘drillDownExitCode’ — Admissible level compare exit code test.
‘embedExitCode’ — Admissible level compare exit code test.
‘fixedPoint’ — test fixed point detection.
‘nestedEmbed’ — basic nested embed tests.
‘nestedEmbedPaperTables’ — test tables in ordarith paper.
‘nestedEmbedPaperTables2’ — test tables in ordarith paper.
‘nestedEmbedPaperTables3’ — test tables in ordarith paper.
B.3 Help topics

Following are topics with more information. Type `help topic` to access them.

- `cmds` – lists commands.
- `defined` – list predefined ordinal variables.
- `compare` – describes comparison operators.
- `members` – describes member functions.
- `ordinal` – describes available ordinal notations.
- `ordlist` – describes ordinal lists and their use.
- `purpose` – describes the purpose and philosophy of this project.
- `syntax` – describes syntax.
- `version` – displays program version.

This program supports line editing and history.

B.4 Ordinals

Ordinals are displayed in plain text (the default) and/or LaTeX format. (Enter `help opts` to control this.) The finite ordinals are the nonnegative integers. The ordinal operators are +, * and ^ for addition, multiplication and exponentiation. Exponentiation has the highest precedence. Parenthesis can be used to group subexpressions.

The ordinal of the integers, \(\omega \), is also represented by the single lowercase letter: \(w \). The Veblen function is specified as \(\psi(p_1,p_2,\ldots,n) \) where \(n \) is any integer > 0. Special notations are displayed in some cases. Specifically \(\psi(x) \) is displayed as \(w^x \). \(\psi(1,x) \) is displayed as \(\epsilon(x) \). \(\psi(1,0,x) \) is displayed as \(\gamma(x) \). In all cases the displayed version can be entered as input.

Larger ordinals in the Veblen hierarchy are specified as \(\psi_{\{1\}}(a_1,a_2,\ldots,a_n) \). The first parameter is enclosed in \{brackets\} not parenthesis. \(\psi_{\{1\}} \) is defined as the union of \(w \), \(\epsilon(0) \), \(\gamma(0) \), \(\psi(1,0,0,0) \), \(\psi(1,0,0,0,0) \), \(\psi(1,0,0,0,0,0) \), \(\psi(1,0,0,0,0,0,0) \), \ldots You can access the sequence whose union is a specific ordinal using member functions. Type `help members` to learn more about this. Larger notations beyond the recursive ordinals are also available. The format for the countable admissible ordinals and their countable limits is \(\omega_{\{k\}} \). To partially fill the gaps introduced with these notations, the following additional notations are used:
omega_{k,g}(a_1,a_2,...,a_n), \omega_{k,e},
[[d_1/s_1,d_2/s_2,...,d_n/s_n]]\omega_{k,g}(a_1,a_1,...,a_n),
[[d_1/s_1,d_2/s_2,...,d_n/s_n]]\omega_{k,e},
[[d_1/s_1,d_2/s_2,...,d_n/s_n]]\omega_{k,e}.

See the documentation ‘A Computational Approach to the Ordinal Numbers’[9] to learn more about these notations.

There are several predefined ordinals. ‘\(w \)' and ‘\(\omega \)' can be be used interchangeably for the ordinal of the integers. ‘\(\varepsilon_0 \)' and ‘\(\omega_1^{CK} \)' are also predefined. Type ‘help defined’ to learn more.

B.5 Predefined ordinals

The predefined ordinal variables are:

omega = \(\omega \)
w = \(\omega \)
omega1CK = \(\omega_1 \)
w1 = \(\omega_1 \)
w1CK = \(\omega_1 \)
eps0 = \(\varepsilon_0 \)

B.6 Syntax

The syntax is that of restricted arithmetic expressions and assignment statements. The tokens are variable names, nonnegative integers and the operators: +, * and ^ (addition, multiplication and exponentiation). Comparison operators are also supported. Type ‘help comparison’ to learn about them. The letter ‘\(w \)' is predefined as omega the ordinal of the integers. Type ‘help defined’ for a list of all predefined variables. To learn more about ordinals type ‘help ordinal’. C++ style member functions are supported with a ‘.’ separating the variable name (or expression enclosed in parenthesis) from the member function name. Enter ‘help members’ for the list of member functions.

An assignment statement or ordinal expression can be entered and it will be evaluated and displayed in normal form. Typing ‘help opts’ lists the display options. Assignment statements are stored. They can be listed (command ‘list’) and their value can be used in subsequent expressions. All statements end at the end of a line unless the last character is ‘\'. Lines can be continued indefinitely. Comments must be preceded by either ‘%’ or ‘//’.

Commands can be entered as one or more names separated by white space. File names should be enclosed in double quotes (") if they contain any non alphanumeric characters such as dot, ".’ Command names can be used as variables. Enter ‘help cmds’ to get a list of commands and their functions.
B.7 Ordinal lists

Lists are a sequence of ordinals. An assignment statement can name a single ordinal or a list of them separated by commas. In most circumstances only the first element in the list is used, but some functions (such as member function ‘limitOrdLst’) use the full list. Type ‘help members’ to learn more about ‘limitOrdLst’.

B.8 Commands

B.8.1 All commands

The following commands are available:
- ‘cmpCheck’ – toggle comparison checking for debugging.
- ‘cppList’ – list the C++ code for assignments or write to an optional file.
- ‘examples’ – shows examples.
- ‘exit’ – exits the program.
- ‘exportTeX’ – exports assignments statements in TeX format.
- ‘help’ – displays information on various topics.
- ‘list’ – lists assignment statements.
- ‘log’ – write log file (ord.log default) (see help logopt).
- ‘listTeX’ – lists assignment statements in TeX format.
- ‘logopt’ – control log file (see help log).
- ‘name’ – toggle assignment of names to expressions.
- ‘opts’ – controls display format and other options.
- ‘prompt’ – prompts for ENTER with optional string argument.
- ‘quit’ – exits the program.
- ‘quitf’ – exits only if not started in interactive mode.
- ‘read’ – read “input file” (ord_calc.ord default).
- ‘readall’ – same as read but no ‘wait for ENTER’ prompt.
- ‘save’ – saves assignment statements to a file (ord_calc.ord default).
- ‘setDbg’ – set debugging options.
- ‘tabList’ – lists assignment values as C++ code to generate a LaTeX table.
- ‘yydebug’ – enables parser debugging (off option).

B.8.2 Commands with options

Following are the commands with options.

Command ‘examples’ – shows examples.
It has one parameter with the following options.
- ‘arith’ – demonstrates ordinal arithmetic.
- ‘compare’ – shows compare examples.
- ‘display’ – shows how display options work.
- ‘member’ – demonstrates member functions.
‘VeblenFinite’ – demonstrates Veblen functions of a finite number of ordinals.
‘VeblenExtend’ – demonstrates Veblen functions iterated up to a recursive ordinal.
‘admissible’ – demonstrates admissible level ordinal notations.
‘admissibleDrillDown’ – demonstrates admissible notations dropping down one level.
‘admissibleContext’ – demonstrates extended admissible ordinal parameters.
‘list’ – shows how lists work.
‘desLimitOrdLst’ – shows how to construct a list of descending trees.

Command ‘logopt’ – control log file (see help log).
It has one parameter with the following options.
‘flush’ – flush log file.
‘stop’ – stop logging.

Command ‘opts’ – controls display format and other options.
It has one parameter with the following options.
‘both’ – display ordinals in both plain text and TeX formats.
‘tex’ – display ordinals in TeX format only.
‘text’ – display ordinals in plain text format only (default).
‘psi’ – additionally display ordinals in Psi format (turned off by the above options).
‘promptLimit’ – lines to display before pausing, < 4 disables pause.

Command ‘setDbg’ – set debugging options.
It has one parameter with the following options.
‘all’ – turn on all debugging.
‘arith’ – debug ordinal arithmetic.
‘clear’ – turn off all debugging.
‘compare’ – debug compare.
‘exp’ – debug exponential.
‘limArith’ – limited debugging of arithmetic.
‘limit’ – debug limit element functions.
‘construct’ – debug constructors.

B.9 Member functions

Every ordinal (except 0) is the union of smaller ordinals. Every limit ordinal is the union of an infinite sequence of smaller ordinals. Member functions allow access to these smaller ordinals. One can specify how many elements of this sequence to display or get the value of a specific instance of the sequence. For a limit ordinal, the sequence displayed, were it extended to infinity and its union taken, that union would equal the original ordinal.

The syntax for a member function begins with either an ordinal name (from an assignment statement) or an ordinal expression enclosed in parenthesis. This is followed by a dot (.)
and then the member function name and its parameters enclosed in parenthesis. The format is `ordinal_name.memberFunction(p)` where p may be optional. Functions `limitOrdLst` and `desLimitOrdLst` return a list. All other member functions return a scalar value. Unless specified otherwise, the returned value is that of the ordinal the function was called from.

The member functions are:

- `cpp` – output C++ code to define this ordinal.
- `descend` – (n,m) iteratively (up to m) take nth limit element.
- `descendFull` – (n,m,k) iteratively (up to m) take n limit elements with root k.
- `desLimitOrdLst` – (depth, list) does limitOrdLst iteratively on all outputs depth times.
- `ek` – effective kappa (or indexCK) for debugging.
- `getCompareIx` – display admissible compare index.
- `isValidLimitOrdParam` – return true or false.
- `iv` – alias for isValidLimitOrdParam.
- `le` – evaluates to specified finite limit element.
- `lec` – alias to return limitExitCode (for debugging).
- `limitElement` – an alias for `le`.
- `listLimitElts` – lists specified (default 10) limit elements.
- `listElts` – alias for listLimitElts.
- `limitOrd` – evaluates to specified (may be infinite) limit element.
- `limitOrdLst` – apply each input from list to limitOrd and return that list.
- `lo` – alias for limitOrd.
- `limitType` – return limitType.
- `maxLimitType` – return maxLimitType.
- `maxParameter` – return maxParameter (for debugging).
- `blt` – return baseLimitTypeEquiv if defined for first term (for debugging).

B.10 Comparison operators

Any two ordinals or ordinal expressions can be compared using the operators: `<`, `<=`, `>`, `>=` and `==`. The result of the comparison is the text either TRUE or FALSE. Comparison operators have lower precedence than ordinal operators.

B.11 Examples

In the examples a line that begins with the standard prompt `ordCalc>` contains user input. All other lines contain program output.

To select an examples type `examples` followed by one of the following options.

- `arith` – demonstrates ordinal arithmetic.
- `compare` – shows compare examples.
- `display` – shows how display options work.
- `member` – demonstrates member functions.
B.11.1 Simple ordinal arithmetic

The following demonstrates ordinal arithmetic.

\[a = \omega^\omega \]
Assigning \(\omega^\omega \) to ‘a’.

\[b = \omega \times \omega \]
Assigning \(\omega^2 \) to ‘b’.

\[c = a + b \]
Assigning \(\omega^\omega + \omega^2 \) to ‘c’.

\[d = b + a \]
Assigning \(\omega^\omega \) to ‘d’.

B.11.2 Comparison operators

The following shows compare examples.

\[\psi(1,0,0) = \gamma(0) \]
Assigning \(\gamma(0) \) to ‘gamma(0)’.

\[\psi(1,\omega) = \epsilon(\omega) \]
Assigning \(\epsilon(\omega) \) to ‘epsilon(\omega)’.

\[\omega^\omega < \psi(1) \]
Assigning \(\omega^\omega \) to ‘psi(1)’.

Normal form: \(\omega \)

B.11.3 Display options

The following shows how display options work.

\[a = \omega^{\omega^\omega} \]
Assigning \(\omega^{\omega^\omega} \) to ‘a’.

\[b = \epsilon(a) \]
Assigning \(\epsilon(a) \) to ‘b’.

\[c = \gamma(b) \]
Assigning \(\gamma(b) \) to ‘c’.
Assigning gamma(epsilon((w^w))) to ‘c’.

ordCalc> list
a = (w^w)
b = epsilon((w^w))
c = gamma(epsilon((w^w)))
%Total 3 variables listed.

B.11.4 Member functions

The following demonstrates member functions.

ordCalc> a=psi(1,0,0,0,0)
Assigning psi(1, 0, 0, 0, 0) to ‘a’.
ordCalc> a.listElts(3)

3 limitElements for psi(1, 0, 0, 0, 0)
le(1) = psi(1, 0, 0, 0)
le(2) = psi(psi(1, 0, 0, 0) + 1, 0, 0, 0)
le(3) = psi(psi(psi(1, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0)
End limitElements

Normal form: psi(1, 0, 0, 0, 0)
ordCalc> b=a.le(6)
Assigning psi(psi(psi(psi(psi(psi(1, 0, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0) to ‘b’.

B.11.5 Veblen function of N ordinals

The following demonstrates Veblen functions of a finite number of ordinals.
The Veblen function with a finite number of parameters, $\psi(x_1, x_2, \ldots, x_n)$, is built up from the function ω^x. $\psi(x) = \omega^x$. $\psi(1, x)$ enumerates the fixed points of ω^x. This is $\epsilon(x)$ which equals $\psi(1, x)$. Each additional variable diagonalizes the functions definable with existing variables. These functions can have any finite number of parameters.

```
ordCalc> a=psi(w,w)
Assigning $\psi(w, w)$ to ‘a’.
ordCalc> b=psi(a,3,1)
Assigning $\psi(\psi(w, w), 3, 1)$ to ‘b’.
ordCalc> b.listElts(3)
3 limitElements for $\psi(\psi(w, w), 3, 1)$
le(1) = $\psi(\psi(w, w), 3, 0)$
le(2) = $\psi(\psi(w, w), 2, \psi(\psi(w, w), 3, 0) + 1)$
le(3) = $\psi(\psi(w, w), 2, \psi(\psi(w, w), 2, \psi(\psi(w, w), 3, 0) + 1) + 1)$
End limitElements

Normal form: $\psi(\psi(w, w), 3, 1)$
ordCalc> c=psi(a,a,b,1,3)
Assigning $\psi(\psi(w, w), \psi(w, w), \psi(\psi(w, w), 3, 1), 1, 3)$ to ‘c’.
ordCalc> c.listElts(3)
3 limitElements for $\psi(\psi(w, w), \psi(w, w), \psi(\psi(w, w), 3, 1), 1, 3)$
le(1) = $\psi(\psi(w, w), \psi(w, w), \psi(\psi(w, w), 3, 1), 1, 2)$
le(2) = $\psi(\psi(w, w), \psi(w, w), \psi(\psi(w, w), 3, 1), 0, \psi(\psi(w, w), \psi(w, w), 3, 1), 1, 2) + 1)$
le(3) = $\psi(\psi(w, w), \psi(w, w), \psi(\psi(w, w), 3, 1), 0, \psi(\psi(w, w), \psi(w, w), \psi(w, w), \psi(\psi(w, w), 3, 1), 1, 2) + 1) + 1)$
End limitElements

Normal form: $\psi(\psi(w, w), \psi(w, w), \psi(\psi(w, w), 3, 1), 1, 3)$

B.11.6 Extended Veblen function

The following demonstrates Veblen functions iterated up to a recursive ordinal.

The extended Veblen function, $\psi_{\{a\}}(x_1, x_2, \ldots, x_n)$, iterates the idea of the Veblen function up to any recursive ordinal. The first parameter is the recursive ordinal of this iteration.

```
ordCalc> a=psi_{\{1\}}(1)
```
Assigning $\psi_{1}(1)$ to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for $\psi_{1}(1)$
le(1) = $\psi_{1} + 1$
le(2) = $\psi_{2}$
le(3) = $\psi_{3}$
le(4) = $\psi_{4}$
End limitElements

Normal form: $\psi_{1}(1)$

Assigning $\psi_{w+1}(3)$ to ‘b’.

ordCalc> b.listElts(4)

4 limitElements for $\psi_{w+1}(3)$
le(1) = $\psi_{w+1}(2) + 1$
le(2) = $\psi_{1}(\psi_{w+1}(2) + 1, 0)$
le(3) = $\psi_{2}(\psi_{w+1}(2) + 1, 0, 0)$
le(4) = $\psi_{3}(\psi_{w+1}(2) + 1, 0, 0, 0)$
End limitElements

Normal form: $\psi_{w+1}(3)$

### B.11.7 Admissible ordinal notations

The following demonstrates admissible level ordinal notations.

Countable admissible ordinal notations and their limits are $\omega_{k}$. The gaps introduced by these notations are partially filled by using notations and ideas from the Veblen hierarchy. The notation for this is $\omega_{k,g}(x_1,x_2,x_3,\ldots,x_n)$. The first parameter is the admissible level. $\omega_{1}$ is the Church-Kleene ordinal, the ordinal of the recursive ordinals. The remaining parameters are similar to those defined in the Veblen hierarchy.

ordCalc> a=\omega_{1}(1)
Assigning $\omega_{1}(1)$ to ‘a’.
ordCalc> a.listElts(4)

4 limitElements for $\omega_{1}(1)$
le(1) = $\omega_{1}$
le(2) = $\psi_{1}(\omega_{1} + 1)$
le(3) = $\psi_{2}(\omega_{1} + 1) + 1$
le(4) = $\psi_{3}(\omega_{1} + 1) + 1$
End limitElements
B.11.8 Admissible notations drop down parameter

The following demonstrates admissible notations dropping down one level.

Admissible level ordinals have a limit sequence defined in terms of lower levels. The lowest admissible level is that of recursive ordinals. To implement this definition of limit sequence, a trailing parameter in square brackets is used. This parameter (if present) defines an ordinal at one admissible level lower than indicated by other parameters.

```
ordCalc> a=w{1}{1}
Assigning omega{1}{1} to ‘a’.
ordCalc> a.listElts(4)

4 limitElements for omega{1}{1}
le(1) = w
le(2) = psi.{ w}
le(3) = psi.{ psi.{ w} + 1}
le(4) = psi.{ psi.{ psi.{ w} + 1} + 1}
End limitElements

Normal form: omega{1}{1}
```

```
ordCalc> b=w{1}
Assigning omega{1} to ‘b’.
ordCalc> c=b.limitOrd(w^3)
Assigning omega{1}[(w^3)] to ‘c’.
ordCalc> c.listElts(4)

4 limitElements for omega{1}[(w^3)]
le(1) = omega{1}[(w^2)]
le(2) = omega{1}[((w^2)*2)]
le(3) = omega{1}[((w^2)*3)]
le(4) = omega{1}[((w^2)*4)]
End limitElements

Normal form: omega{1}[(w^3)]
```

```
ordCalc> d=w{5,c}(3,0)
Assigning omega{5, omega{1}[(w^3)]}(3, 0) to ‘d’.
ordCalc> d.listElts(4)

4 limitElements for omega{5, omega{1}[(w^3)]}(3, 0)
le(1) = omega{5, omega{1}[(w^3)]}(2, 1)
```
B.11.9 Admissible notation parameters

The following demonstrates extended admissible ordinal parameters.

The context parameter in admissible level ordinals allows one to use any notation at any admissible level to define notations at any lower admissible level or to define recursive ordinals.

```
ordCalc> a=w{1}(4)
Assigning omega{1}(4) to 'a'.
ordCalc> a.listElts(4)

4 limitElements for omega{1}(4)
le(1) = omega{1}(3)
le(2) = psi{omega{1}(3) + 1}(3)
le(3) = psi{psi{omega{1}(3) + 1}(3) + 1}(3)
le(4) = psi{psi{psi{omega{1}(3) + 1}(3) + 1}(3) + 1}(3)
End limitElements

Normal form: omega{1}(4)
```

```
ordCalc> b=w{1}(1)
Assigning omega{1}(1) to 'b'.
ordCalc> b.listElts(4)

4 limitElements for omega{1}(1)
le(1) = omega{1}
le(2) = psi{omega{1} + 1}
le(3) = psi{psi{omega{1} + 1} + 1}
le(4) = psi{psi{psi{omega{1} + 1} + 1} + 1}
End limitElements

Normal form: omega{1}(1)
```
ordCalc> c.listElts(4)

4 limitElements for omega_{ 1, 7 }
le(1) = omega_{ 1, 6}(omega_{ 1, 6} + 1)
le(2) = omega_{ 1, 6}(omega_{ 1, 6} + 1, 0)
le(3) = omega_{ 1, 6}(omega_{ 1, 6} + 1, 0, 0)
le(4) = omega_{ 1, 6}(omega_{ 1, 6} + 1, 0, 0, 0)
End limitElements

Normal form: omega_{ 1, 7 }
ordCalc> r=[[1]]w_{ 1 }
Assigning [[1]]omega_{ 1 } to ‘r’.
ordCalc> r.listElts(4)

4 limitElements for [[1]]omega_{ 1 }
le(1) = [[1]]omega_{ 1 }[[ 1]]
le(2) = [[1]]omega_{ 1 }[[ 2]]
le(3) = [[1]]omega_{ 1 }[[ 3]]
le(4) = [[1]]omega_{ 1 }[[ 4]]
End limitElements

Normal form: [[1]]omega_{ 1 }

B.11.10 Lists of ordinals

The following shows how lists work.

Lists are a sequence of ordinals (including integers). A list can be assigned to a variable just as a single ordinal can be. In most circumstances lists are evaluated as the first ordinal in the list. In ‘limitOrdLst’ all of the list entries are used. These member functions return a list with an input list

ordCalc> lst = 1, 12, w, gamma( w^w ), w1
Assigning 1, 12, w, gamma( w^w ), omega_{ 1 } to ‘lst’.
ordCalc> a=w1.limitOrdLst(lst)
( omega_{ 1 } ).limitOrd( 12 ) = omega_{ 1 }[ 12]
( omega_{ 1 } ).limitOrd( w ) = omega_{ 1 }[ w]
( omega_{ 1 } ).limitOrd( gamma( w^w ) ) = omega_{ 1 }[ gamma( w^w ) ]
Assigning omega_{ 1 }[ 12], omega_{ 1 }[ w], omega_{ 1 }[ gamma( w^w ) ] to ‘a’.
ordCalc> bg = w_{ w+33 }
Assigning omega_{ w + 33 } to ‘bg’.
ordCalc> c=bg.limitOrdLst(lst)
( omega_{ w + 33 } ).limitOrd( 12 ) = omega_{ w + 33 }[ 12]
( omega_{ w + 33 } ).limitOrd( w ) = omega_{ w + 33 }[ w]
\[
( \omega \{ w + 33 \} ).limitOrd( \gamma( w^w ) ) = \omega \{ w + 33 \}[ \gamma( w^w ) ]
\]
\[
( \omega \{ w + 33 \} ).limitOrd( \omega \{ 1 \} ) = \omega \{ w + 33 \}[ \omega \{ 1 \} ]
\]
Assigning \( \omega \{ w + 33 \}[ 12 \} \), \( \omega \{ w + 33 \}[ w \} , \( \omega \{ w + 33 \}[ \gamma( w^w ) ] \), \( \omega \{ w + 33 \}[ \omega \{ 1 \} ] \) to ‘c’.

### B.11.11 List of descending trees

The following shows how to construct a list of descending trees.

‘desLimitOrdLst’ iterates ‘limitOrdLst’ to a specified ‘depth’. The first parameter is the integer depth of iteration and the second is the list of parameters to be used. This routine first takes ‘limitOrd’ of each element in the second parameter creating a list of outputs. It then takes this list and evaluates ‘limitOrd’ for each of these values at each entry in the original parameter list. All of these results are combined in a new list and the process is iterated ‘depth’ times. The number of results grows exponentially with ‘depth’.

\[
\text{ordCalc}\,>\,\text{lst} = 1, 5, w, \psi(2,3)
\]
Assigning 1, 5, w, \( \psi(2,3) \) to ‘lst’.

\[
\text{ordCalc}\,>\,\text{bg} = w \{ 3 \}
\]
Assigning \( \omega \{ 3 \} \) to ‘bg’.

\[
\text{ordCalc}\,>\,d = \text{bg}.desLimitOrdLst(2, \text{lst})
\]
\[
( \omega \{ 3 \} ).limitOrd( 1 ) = \omega \{ 2 \}
\]
\[
( \omega \{ 3 \} ).limitOrd( 5 ) = \omega \{ 2, 1 \} + 1 \} + 1 \} + 1 \} + 1 \} + 1 \}
\]
\[
( \omega \{ 3 \} ).limitOrd( w ) = \omega \{ 3 \}[ \omega \{ 3 \} \psi( 2, 3 ) ]
\]
Descending to 1 for \( \omega \{ 3 \} \)
\[
( \omega \{ 3 \}[ 1 ] ).limitOrd( 1 ) = \omega \{ 2 \}
\]
\[
( \omega \{ 3 \}[ 5 ] ).limitOrd( 1 ) = \omega \{ 3 \}[ 4 ]
\]
\[
( \omega \{ 3 \}[ w ] ).limitOrd( 1 ) = \omega \{ 3 \}[ 1 ]
\]
\[
( \omega \{ 3 \}[ \psi( 2, 3 ) ] ).limitOrd( 1 ) = \omega \{ 3 \}[ \psi( 2, 2 ) ]
\]
Assigning \( \omega \{ 3 \}[ 1 ] \), \( \omega \{ 3 \}[ 5 ] \), \( \omega \{ 3 \}[ w \} , \( \omega \{ 3 \}[ \psi( 2, 3 ) ] \), \( \omega \{ 2 \} \), \( \omega \{ 2, 1 \} + 1 \} + 1 \} + 1 \} + 1 \} + 1 \} + 1 \}, \( \omega \{ 3 \}[ 4 ] \), \( \omega \{ 2, \omega \{ 2, \omega \{ 2, \omega \{ 3 \}[ 4 ] + 1 \} + 1 \} + 1 \} + 1 \}, \( \omega \{ 3 \}[ 1 ] \), \( \omega \{ 3 \}[ 5 ] \), \( \omega \{ 3 \}[ \psi( 2, 2 ) ] \), \( \omega \{ 3 \}[ \psi( 2, 2 ) ] \), \( \omega \{ 3 \}[ \psi( 2, 2 ) ] \), \( \omega \{ 3 \}[ \psi( 2, 2 ) ] \) to ‘d’.
References


[26] Benoît Mandelbrot. Fractal aspects of the iteration of $z \mapsto \lambda z(1 - z)$ for complex $\lambda$ and $z$. Annals of the New York Academy of Sciences, 357:49–259, 1980. 41, 93, 161


Index

The defining reference for a phrase, if it exists, has the page number in italics. The following index is semiautomated with multiple entries created for some phrases and subitems automatically detected. Hand editing would improve things, but is not always practical.

Symbols

< 169
<= 169
== 169
> 169
>= 169
A(n, |lb_1|, |lb_2|) 24
L(|lb_x|) = L(0, |lb_x|) 23
L(od_1) 23
L(n, |lb_x|) 23
L(r) 17
M(|lb_1|) 24
R(|lb_x|, od_y) = R(0, |lb_x|, od_y) 23
R(n, |lb_x|, od_y) 23
S(n, |lb_x|) 23
T_n 17
T_{od_2}(od_1) 23
V(m, |lb_1|) 24
Z(|lb_x|) 24
|lb_x| m 23
|lb_x| n 23
Δ 63, 65
Γ α 70
Ω 12, 95
Ψ(α) 95
Ψ(ω_α) 96
||lb_x|| 24
δ_{ck} 109
∅ 156
≡ 156
∃ 156
∃! 157
 ∀ 156

lb syntax 21
P 16, 17
P_1 18
Q 20, 23
Q[0] 21
Q[1] 21
Q[2] 21
Q[|lb|] 21, 23
Q_{L} 24
O 15

extending 16
Q label syntax 21
notations 21
ordinal (od) syntax 22
syntax 21
lb_1 + m 23
lb 21
od_1 <, od_2 22
od_1 < od_2 23
od_2(od_1) 23
ω 8, 11, 59, 63, 90, 153, 157
ω_1 9, 90, 102
ω_1.limitOrd 93
ω_{ck} 20
ω_{ck} 9, 12, 90
ω_2 90
od syntax 22
⊆ 158
ε_0 11, 57, 58, 65, 68
ε_α 70
φ(1,0) 58
φ(α,β) 65
φ(1,0) 68
φ_1 70
φ_2 70
{x} 157
n_0 15
P_′ 18
Q[|lb_1|] 23
virtual function 57
& 71

A

AA 75
AB 75, 86
abstractions, Platonic 28
Addition 62
addition, FiniteFuncOrdinal 77
Ordinal 62
admisCodeLevel 106
admisCodeLevel 104, 108, 115, 123, 125
admisLevelFunctional 102

181
C++ examples 104
AdmisLevOrdinal 91, 103, 133
AdmisLevOrdinal class 102
AdmisLevOrdinal operators 125
AdmisLevOrdinal::
    fixedPoint 123
AdmisLevOrdinal::
    limitElement examples 116, 117, 118
AdmisLevOrdinal::limitOrd examples 124
AdmisNormalElement 91, 102
AdmisNormalElement::
    compare 102, 104, 106, 133
AdmisNormalElement::
    compareCom 105, 106
AdmisNormalElement::
    drillDownLimitElement 111
    exit codes 113
AdmisNormalElement::
    drillDownLimitElementCom 111
    exit codes 114
AdmisNormalElement::
    Embeddings::
        compare 136
AdmisNormalElement::
    fixedPoint 147
AdmisNormalElement::
    increasingLimit 120, 138
AdmisNormalElement::
    isValidLimitOrdParam 119, 147
AdmisNormalElement::
    leUse(lo) 120
AdmisNormalElement::
    limitElement 107, 110, 136
    exit codes 112
AdmisNormalElement::
    limitElementCom 110
    exit codes 113
AdmisNormalElement::
    limitInfo 119
AdmisNormalElement::
    limitOrd 119
AdmisNormalElement::
    limitOrdCom 121
    exit codes 122
AdmisNormalElement::
    maxLimitType 119, 147
AdmisNormalElement::
    paramLimitElement 142
    cases 142
admissible notation parameters example 175
admissible level ordinal notations 91
notations drop down parameter example 174
ordinal 90
ordinal notations example 173
ordinals and projection 41
admissible 168, 170
all 168
ambiguous as uncountable 14, 28
arith 167, 168, 169
assignment statement 166
automated proof verification 28
axiom of choice 158
of extensionality 156
of infinity 157
of power set 158
of replacement, objective 160
of the empty set 156
of union 156
of unordered pairs 156
scheme of replacement 157
axioms of ZFC 155, 158

B
Bachmann-Howard ordinal 96
barber paradox 157
base class 57
basis, theoretical 13
beyond recursive ordinals 11
blt 169
both 168

C
C 34, 132
calculator command options 167
commands 167
examples 169
list 176
ordinal 7, 8
syntax 166
Cantor diagonalization 148
Georg 147
normal form 32, 58
Cantor's proof 147
cantorCodeLevel 77, 78, 80
CantorNormalElement 59, 60, 70, 78, 80
Admissible level ordinal collapsing 99
CantorNormalElement::
    compare 60, 71
CantorNormalElement::
    embedType 119, 147
CantorNormalElement::
    expTerm 80
CantorNormalElement::
    getMaxParameter 71
CantorNormalElement::
    limitElement 60, 74
CantorNormalElement::
    cfp 105, 106
    choice, axiom of 158
    Church, Alonzo 9, 90
    Church-Kleene 125
        ordinal 9, 90, 102, 173
class 57
    constructor 59
class NestedEmbeddings 136
clear 168
cmds 165
cmp 105
cmpCheck 167
code, exit 74, 84, 105, 109
    source 8
codeLevel 62, 71, 77, 107, 125
collapsing, admissible level ordinal 99
    function 95
    function, ordinal 97
    ordinal 95
command line options 163
commands, calculator 167
    with options 167
compareCom 105, 106
compareFiniteParams 105
comparison operators 169
    operators example 170
completed infinite 147
cosmology 150
countable 147
    admissible ordinal 90, 102
    admissible ordinals 38
    infinite 28
    ordinals 20
cpp 169
cppList 102, 103, 133, 134, 167
createParameters 70, 71
createVirtualOrd 107
createVirtualOrdImpl 107
creative divergent processes 15
    philosophy 161
cut, Dedekind 12

D
Darwin and creating mathematics 15
DCAL 43, 50, 111, 113, 114, 132, 143, 146
DCBD 50, 53, 111, 114, 132, 143, 146
DCCS 50, 53, 111, 113, 114, 132, 143, 146
DCDO 43, 50, 111, 113, 114, 132
DCES 43, 50, 111, 114, 132
dd 105
DDAC 111, 113
DDBO 43, 111, 112, 113, 132, 146
DDCO 43, 111, 112, 113, 132, 146
Dedekind cut 12
definability and provability 29
defined 165
definition of \( P \) 17
definition of \( Q \) 25
deleteLeast 140
descend 169
descendFull 169
desLimitOrdLst 168, 169, 170, 177
determined, logically 14
diagonalization, Cantor 148
display options example 170
display 167, 169
displayable, not \( \Psi \) 99
DQA 53, 140, 144, 146
DQB 53, 140, 143, 144
DQC 53, 140, 144, 146
DQD 53, 140, 144
DQE 53, 140, 143, 144, 146
dRepl 109
drillDown 105, 133
drillDownCKOne 108, 111, 115, 128, 131, 132, 139
drillDownLimitElement 107, 138
drillDownLimitElementCom 107, 139
drillDownLimitElementEq 138, 139
drillDownOne 108, 111, 115, 128, 131, 132, 139
drillDownOneEmbed 108, 111, 115, 128, 131, 132, 139
drillDownSucc 108, 111, 115, 127, 131, 132, 139
drillDownSuccCKOne 108, 111, 115, 127, 131, 132, 139
drillDownSuccEmbed 108, 111, 115, 127, 131, 132, 139

E

effCk 105
effEbd 137
effectiveEmbedding 137
effectiveIndexCK 105
ek 169
embedding 137
nested 44
embedding 123
Embeddings 133, 135
Embeddings::compare 136
Embeddings::

isDrillDownEmbed 136
Embeddings::nextLeast 136
embedLimitElement 138, 141
embedType 92, 102, 119, 147
embIx 137
empty set axiom 156
enumerable, recursively 11
eps0 166
epsilon(x) 165
example of admissible notation parameters 175
of admissible notations drop down parameter
of admissible ordinal notations 173
of comparison operators 170
of display options 170
of extended Veblen function 172
of list of descending trees 177
of lists of ordinals 176
of member functions 171
of simple ordinal arithmetic 170
of Veblen function of N ordinals 171
examples admisLevelFunctional C++ code

AdmisLevOrdinal::

limitElement 116, 117, 118
AdmisLevOrdinal::limitOrd 124
FiniteFuncOrdinal C++ code 73
FiniteFuncOrdinal exponential 81
FiniteFuncOrdinal multiply 79
finiteFuncOrd C++ code 73
finiteFunctional code 72
iterativeFunctional C++ code 83
IterFuncOrdinal exponential 89
IterFuncOrdinal multiply 88
NestedEmbedOrdinal code 135
NestedEmbedOrdinal::

drillDownLimitElementEq 144

NestedEmbedOrdinal::

embedLimitElement 145
NestedEmbedOrdinal::

limitElement 143
NestedEmbedOrdinal::

limitOrd 149
Ordinal exponential 66
Ordinal exponentiation C++ code 65
Ordinal multiply 64
Ordinal::limitElement 61
admissible 43
calculator 169
nested 101
projection 50
examples 167
existential quantifier 156
exit code 74, 84, 105, 109
code from limitElement 69
codes AdmisNormalElement::

drillDownLimitElement 113
codes AdmisNormalElement::

drillDownLimitElementCom 114
codes AdmisNormalElement::

LimitElement 112
codes AdmisNormalElement::

limitElementCom 113
codes AdmisNormalElement::

limitOrdCom 122
Codes FinitefuncNormalElement::

limitElementCom 76

exit 167
drop 168
experimental science 28
explicit incompleteness 11, 147
exponentiation 63

Ordinal 63
exportTeX 167
extended Veblen function example 172
extending O 16
O and P 20
extensionality, axiom of 156

F

factor 125
FALSE 169
FB 37, 75, 76, 86, 132
FD 34, 37, 75, 76, 86, 132
Feferman, Solomon 14, 150
Feferman’s Q1 15
finite function hierarchy 67
function normal form 68
functions limitElement 68
ordinal 22, 25
parameter Veblen functions 33
finiteFuncCodeLevel 70, 71, 78
FiniteFuncNormalElement 70
FiniteFuncNormalElement::
    compare 71, 83
FiniteFuncNormalElement::
    compareFiniteParams 74
FiniteFuncNormalElement::
    doMultiply 78
FiniteFuncNormalElement::
    doToPower 80
FiniteFuncNormalElement::
    limitElement 74
FiniteFuncNormalElement::
    limitElementCom 75
FiniteFuncNormalElement::
    limitElementCom exit codes 76
FiniteFuncNormalElement::
    limitOrd 82
FiniteFuncNormalElement::
    limitOrdCom 82
FiniteFuncOrdinal 70, 71, 82
    addition 77
    C++ examples 73
    constructor 70
    exponential examples 81
    exponentiation 80
    multiplication 77
    multiply examples 79
FiniteFuncOrdinal operators 77
FiniteFuncOrdinal::
    compare 71
FiniteFuncOrdinal::
    fixedPoint 77
FiniteFuncOrdinal::
    limitElement 74
finiteFunctional 70, 72, 73, 77
C++ examples 73
    Ordinal Calculator examples 72
FiniteFunctionNormalElement::
    limitType 119, 147
finiteLimit 108, 131
fixed point 65, 71, 80, 82
    points 10
fixedPoint 77, 87, 123, 147
FL 34, 37, 75, 76, 86, 132, 143
flush 168
FN 34, 75, 76, 86, 132
FOB 122
FOC 122
form, normal 59, 91, 102
    formalization subjective parts of ZF 160
    funcParameters 71
function, collapsing 95
    continuous 65
    normal 65
    Veblen 165
functionLevel 105
functionNxtSucc 85, 108, 115, 129, 131, 132, 139
functions, member 57, 168
    ordinal 10
functionSucc 85, 108, 115, 127, 131, 132, 139

G

Gödel number 15
    game theory 15
    gamma(x) 165
    getCompareIx 169
    getMaxParameter() 105, 136
    GNU General Public License 8
    Gnu Multiple Precision Arithmetic 59
    God Created the Integers 12

H

help 167
    Hermann Weyl 14
    hierarchies of ordinal notations 20
    hierarchy, hyperarithmetic 14
    ordinal 28, 153
    Veblen 10, 12, 20, 32, 58, 63
    Howard, Bachmann- ordinal 96
    hyperarithmetic hierarchy 14
    hypothesis, continuum 12, 150

I

ideal, Platonic 147
    IF 85, 86
    IfNe 109
    IG 37, 43, 85, 86, 132
    ignf 105, 106
    ignoreFactor 105
    II 37, 85, 86, 113, 132
    IJ 37, 85, 86, 132
    IK 37, 85, 86, 132, 143
    impredicative 11, 147
    incompleteness, explicit 11, 147
    theorem 147
    increasingLimit 120
    index, admissible 90, 91, 102
indexCKsuccParam \(108, 110, 115, 128, 131\), iv 169

indexCKsuccParamEq \(108, 110, 115, 129, 131\), iv 169

indexCKtoLimitType \(108, 109, 131\)

indexDecr 140

indexDecr2 140

IndexedLevel 138

induction, integer 8, 157

ordinal 10

infinite, completed 147

countable 28

ordinals 150

potentially 150

sets 8

infinity, axiom of 157

Int data type 59

integer induction 8, 157

integerLimitType 92, 93, 107, 138

integers, God created the 12

Interactive mode 31

interpretation, computational 12

of ZF, objective 161

interpretations, Platonic 14

isDdE 105

isDdEmb 109

isDrillDownEmbed 105, 109

isLimit 109

isLm 109

isSc 109

isSuccessor 109

isValidLimitOrdParam 92, 102, 119, 147, 169

isZ 105

iterative functional hierarchy 70

iterativeFunctional 82

C++ examples 83

IterativeFunctionNormalElement 109

iterFuncCodeLevel 82

IterFuncNormalElement::

compare 83, 104

IterFuncNormalElement::

limitElement 84, 107

IterFuncNormalElement::

limitElementCom 85

exit codes 86

IterFuncNormalElement::

maxLimitType 119

IterFuncOrdinal 82, 91, 102

exponential examples 89

multiply examples 88

operators 87

IterFuncOrdinal::

fixedPoint 87

iterMaxParam 87, 123

K

Kleene, Stephen C. 9, 90

Kleene’s \(O\) 13, 15, 20

L

Löwenheim, Leopold 148

Löwenheim-Skolem theorem 148

labels, level 24

ranking 24

large cardinal axioms 15

LCAF 110, 113

LCBL 43, 110, 112, 113, 132

LCCI 43, 110, 113

LDP 43, 50, 110, 112, 113, 132, 145

LCI 43, 53, 110, 112, 113, 132, 143, 145

le 109, 141, 169

LEAD 110, 112, 113, 114, 146

leastIndexLimit 127, 128, 131, 132, 139, 141, 148, 150

leastIndexLimitParam 127, 131, 132, 139, 141, 148, 150

leastIndexOrdParam 129, 131, 132, 139, 141, 148, 150

leastIndexSuccParam 129, 131, 132, 139, 142

leastLevelLimit 126, 131, 132, 139, 141, 148, 150

leastLevelLimitParam 130, 131, 132, 139, 141, 148, 150

leastLevelSuccParam 129, 131, 132, 139, 142

LEBC 110, 112, 113

leC 92, 169

LCK 50, 110, 112, 132

LEDC 43, 110, 112, 132

LEDE 50, 53, 110, 112, 132, 145

LEEE 50, 53, 110, 112, 132, 143, 145

leUse 107, 109, 120

level labels 24

levelDecr 140

levelDecrIndexSet 140

limArith 168

limit ordinal 8, 25

ordinal notation 16

limit 168

limitations of ordinal notations 36

limitElement 60, 68, 74, 84, 92, 107, 136, 169

exit code 69

finite functions 68

limitElementCom 107, 139

limitExitCode 92, 169
limitInfo 119, 147
LimitInfoType 120, 147
limitOrd 82, 92, 102, 119, 147, 169, 177
limitOrdA 126
limitOrdList 169, 176
limitType 92, 93, 95, 102, 119, 147, 169
list, calculator 176
list 167, 168, 170
listElts 169
listLimitElts 169
lists of ordinals example 176
listTeX 167
lo 109, 169
LOA 121, 122, 149
loa 141
LOB 121, 122
LOC 121, 122
LOD 121, 122, 149
LOE 121, 122
LOF 121, 122, 149
log 167
logically determined 14
logopt 167, 168
looking glass reality 12
Lowenheim-Skolem theorem 13
lp1 109
lSg 109
lsx 109

M

Machines, Turing 11
management, memory 58
Mandelbrot 99, 125
set 93
manual, user’s 8
material, tutorial 8
Mathematica, Principia 93
Mathematical Infinity and Human Destiny
mathematical objects 154
mathematics, Objective 13
mathematics’ inherent incompleteness 148
maxLimitType 92, 93, 102, 119, 147, 169
maxParameter 105, 169
maxParamFirstTerm 105
medieval metaphysics of mathematics 14
member functions 57, 168
functions example 171
member 167, 169
members 165

memory management 58
mode, Interactive 31
Mpir 59
multiple precision arithmetic 59
multiplication 62
Ordinal 62
multiply 77, 78
multiplyBy 62, 77, 78

N

name 167
namespace ord 59
NEA 141
NEB 53, 132, 141, 145
NEC 53, 132, 141, 145
NEF 53, 132, 141, 143, 145
NEG 53, 132, 141, 145
nested embedding 44
embedding constraints 46
embedding syntax 46
examples 101
NestedEmbed examples 53
nestedEmbedCodeLevel 137
nestedEmbedCodeLevel 131, 132, 133, 150
NestedEmbeddings 133, 135, 136
NestedEmbeddings::compare 136
NestedEmbeddings::
nextLeast 136
nestedEmbedFunctional 133
NestedEmbedNormalElement transitions 146
NestedEmbedNormalElement:
compare 133, 137
NestedEmbedNormalElement::
drillDownLimitElementEq 149, 144
examples 144
NestedEmbedNormalElement::
embedLimitElement 141, 145
examples 145
NestedEmbedNormalElement::
limitElement 136, 139, 143
examples 143
NestedEmbedNormalElement::
limitInfo 147
NestedEmbedNormalElement::
limitOrd 147, 148, 149
examples 149
NestedEmbedNormalElement::
limitOrdCom 147
NestedEmbedNormalElement::
NestedEmbeddings::
compare 136

187
NestedEmbedNormalElement::
  paramLimitElement examples 145
NestedEmbedOrdinal 133, 134
NestedEmbedOrdinal class 133
NestedEmbedOrdinal examples 135
NestedEmbedOrdinal::
  fixedPoint 147
nestEmbed 137
nextLeast 136, 140, 142
NLA 139, 143, 145
NLB 139, 140, 143, 146
NLC 139, 143, 146
NLE 139, 143
NLP 139, 143, 145
nLsg 109
nlsx 109
NOA 148
NOB 148, 149
NOC 148, 149
NOD 148
NOF 148
NOG 148, 149
normal form 59, 91, 102
  form, finite function 68
  function 65
normalForm 59
not $\Psi$ displayable 99
notation, ordinal 9, 10, 15
  recursive ordinal 153
notations for $\Omega$ 21
nullLimitType 92, 93

O

object oriented language 57
  objective axiom of replacement 160
    interpretation ZF 161
Objective mathematics 13, 15
  objective parts of ZF 159
    parts of ZF, formalization 160
  objects, mathematical 154
OFA 82, 122
OFB 82, 122, 149
omega 165, 166
omega w 166
omega1CK 166
Operators 60
  operators, comparison 169
  opts 167, 168
oracle 11
  TM 90
ord namespace 59
ordinal 8, 165
admissible 90
  admissible level 90
  arithmetic examples 61
Bachmann-Howard 96
  calculator 7, 8
Church-Kleene 9, 90, 102, 173
  collapsing 95
  collapsing function 97
  finite 22, 25
  functions 10
  hierarchy 28, 153
  induction 10
  limit 8, 25
  lists 167
  normal form 58
  notation 9, 10, 15
  recursive 7, 9, 12, 15, 65, 90
  successor 8, 16
  uncountable 12
Ordinal 11, 12, 57, 58, 102, 165
  addition 62
  base class 58
  exponential examples 66
  exponentiation 63
  exponentiationC++ code examples 65
  expressions 59
  multiplication 62
  multiply examples 64
  operators 60
Ordinal::compare 60, 71
Ordinal::
  isValidLimitOrdParam 92
Ordinal::limitElement 60, 68, 107, 138
  examples 61
Ordinal::limitOrd 92
Ordinal::limitType 92
Ordinal::maxLimitType 92
Ordinal::normalForm 59
Ordinal::psiNormalForm 99
Ordinal::texNormalForm 59, 70
OrdinalC++ code examples 59
OrdinalImpl 74
OrdinalImpl::embedType 92
OrdinalImpl::limitElement 74
ordinals, countable 20
  infinite 150
    predefined 166
    recursive 153
  ordlist 165

P

  paradox, barber 157
R

ranking labels 24
read 167
readall 167
reality, physical 150
recOrdLimitType 93
recursive 11
ordinal 7, 9, 12, 15, 65, 90
ordinal notation 153
ordinals 153
recursively enumerable 11
relative properties 155
rep1 109
rep2 109
replace1 109
replace2 109
replacement axiom, objective 160
axiom scheme 157
Rtn x 109
Russell, Bertrand 93

S

Sacks, Gerald 90
save 167
science, experimental 28
SELF 21, 23, 26
set, Mandelbrot 93
setDbg 167, 168
setDbg compare 84
setDbg limit 84
sets, infinite 8
significance, physical 150
simple ordinal arithmetic example 170
Skolem, Thoralf 148
Solomon Feferman 14
source code 8
statement, assignment 166
static function 78
stop 168
structure, program 30
subclass 57, 62
successor ordinal 8, 16
summary of \( P \) 19
of \( Q \) 27
syntax, calculator 166
of \( Q \) 21
of \( Q \) label (1b) 21
syntax 165
sz 109

Q

quantification over the reals 11
quantifier, existential 156
universal 156
quit 167
quitf 167