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Abstract

An ordinal calculator has been developed as an aid for understanding the countable
ordinal hierarchy and as a research tool that may eventually help to expand it. A GPL
licensed version is available in C++. It is an interactive command line calculator and can
be used as a library. It includes notations for the ordinals uniquely expressible in Cantor
normal form, the Veblen hierarchies and a form of ordinal projection or collapsing
using notations for countable admissible ordinals and their limits. The calculator does
addition, multiplication and exponentiation on ordinal notations. For a recursive limit
ordinal notation, α, it can list an initial segment of an infinite sequence of notations such
that the union of the ordinals represented by the sequence is the ordinal represented
by α. It can give the relative size of any two notations and it determines a unique
notation for every ordinal represented. Input is in plain text. Output can be plain
text and/or LATEX math mode format. This approach is motivated by a philosophy of
mathematical truth that sees objectively true mathematics as connected to properties
of recursive processes. It suggests that computers are an essential adjunct to human
intuition for extending the combinatorially complex parts of objective mathematics.
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Introduction

An ordinal calculator has been developed as an aid for understanding the countable ordinal
hierarchy and as a research tool that may eventually help to expand it. A GPL licensed
version is available in C++1. It is an interactive command line calculator and can be used as
a library. It includes notations for the ordinals uniquely expressible in Cantor normal form
(that are < ε0), the Veblen hierarchies and a form of ordinal projection or collapsing using
notations for countable admissible ordinals and their limits (see section 5).

1The source code and executable can be downloaded from https://sourceforge.net/projects/ord.
The downloads include a users manual and a document describing the underlying mathematics and docu-
menting the code.
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The calculator does addition, multiplication and exponentiation on ordinal notations.
For a recursive limit ordinal notation, α, it can list an initial segment of an infinite sequence
of notations such that the union of the ordinals represented by the sequence is the ordinal
represented by α. It can give the relative size of any two notations and it determines a
unique notation for every ordinal represented. Input is in plain text. Output can be plain
text and/or LATEX math mode format.

Loosely speaking there are two dimensions to the power of axiomatic mathematical sys-
tems: definability and provability. The former measures what structures can be defined and
the latter what statements about these structures are provable. Provability is usually ex-
panded by extending definability, but there are other ways to expand provability. In arguing
for the necessity of large cardinal axioms a number of arithmetic statements have been shown
to require such axioms to decide[8]. This claim is relative to the linear ranking of generally
accepted axiom systems. However any arithmetic (or even hyperarithmetic) statement can
be decided by adding to second order arithmetic a finite set of axioms that say certain inte-
gers do or do not define notations for recursive ordinals in the sense of Kleene’s O[11]2 This
follows because Kleene’s O is a Π1

1
3 complete set4[18] and a TM (Turing machine) with an

oracle that makes a decision must do so after a finite number of queries.
Large cardinal axioms are needed to decide some questions because it has not been

possible to construct a sufficiently powerful axiom system about notations for recursive
ordinals. This can change. Any claim that large cardinal axioms are needed to decide
arithmetic statements is relative to the current state of mathematics.

Large cardinal axioms seem to implicitly define large recursive ordinals that may be be-
yond the ability of the unaided human mind to define explicitly. Thus the central motivation
of this work is to use the computer as a research tool to augment human intuition with the
enormous combinatorial power of today’s computers.

There is the outline of a theory of objective mathematical truth that underlies this ap-
proach in Section 7. This theory sees objective mathematics as logically determined by a
recursive enumerable sequence of events. (The relationship between these events may be
complex5, but these events, by themselves, must decide the statement.) Objective mathe-
matics includes arithmetic and hyperarithmetic statements and some statements requiring
quantification over the reals.

This paper’s intended readership is anyone with an interest in the recursive ordinals or the
foundations of mathematics that has a basic understanding of programming (at least knows
what a TM is and how it can be programmed) and a basic understanding of set theory and
ordinal numbers such as might be obtained in an introductory course in set theory or its
equivalent.

2Kleene’s O is a set of notations for all recursive ordinals. It obtains this completeness by a definition that
requires quantifying over the reals and thus these notation are not recursively enumerable. Notations for
any initial segment of these ordinals ≤ α, a recursive ordinal, are recursively enumerable from any member
of O which is a notation for α.

3A Πn statement starts with a universal quantifier (∀) and contains n− 1 alternations between universal
and existential (∃) quantifiers. A Π1

n statement has a similar definition for quantifiers over the reals.
4A Π1

1 complete set, if it is encoded as a TM oracle, allows the TM to decide any Π1
1 statement.

5The valid relationships cannot be precisely defined without limiting the definition beyond what is in-
tended.

3



1 Program structure and interactive mode

This section gives a brief overview of aspects of object oriented programming in C++ and how
they are used to structure the program. It then gives a brief description of the interactive
mode of the calculator. It is intended to keep this article self contained for those with a
limited knowledge of programming and to introduce the interactive calculator.

1.1 Program structure

C++ connects data and the procedures that operate on that data by defining a class6. Both
data structures and member functions that operate on those structures are declared within a
class. Instances of a class are created with a special member function called a constructor.
This helps to insure that all instances of a class are properly initialized.

C++ classes can form a hierarchy with one class derived from another. The first or
base class has only the operations defined in it. A derived class has both the base class

operations and its own operations. In the ordinal calculator there is a base class Ordinal

for notations less than ε0. Larger ordinals are derived in a hierarchy that has Ordinal as its
base class. All members of this hierarchy can be referenced as Ordinals. Some procedures,
like compare that determines the relative size of two notations, must be rewritten for each
new derived class. By using virtual functions with the same name, compare, the correct
version will always be called even though the class instance is only referenced as an Ordinal

in the code. Programs which call Ordinal member functions like compare are written with an
instance of the Ordinal class followed by dot and the member function and its parameters.
For example ord1.compare(ord2) compares Ordinals ord1 and ord2. This example returns
-1,0 or 1 if ord1 is <,= or > ord2.

1.2 Interactive mode

The ordinal calculator has a command line interactive mode that supports most functions
without requiring C++ coding. In this mode one can assign ordinal expressions to a variable.
These expressions can include ordinal notation variables. Aside from reserved words7, all
names starting with a letter are variables that can be assigned notations. Typing a name
assigned to a notation will display the notation in plain text format (the default) and/or
LATEX format8.

The calculator includes symbols for addition ‘+’, multiplication ‘*’, exponentiation ‘^’ and
parentheses to group subexpressions. To compare the relative size of two ordinal expressions
use the operators, <, <=, >, >= and ==. To list the first n notations for ordinals in an infinite

6C++ constructs and plain text calculator input and output are in typewriter font.
7The reserved words in the calculator are help and the commands listed by typing “help cmds”, w and

omega representing ω, epsilon representing ε, gamma representing Γ, psi representing ϕ, w1CK representing
ωCK
1 (the ordinal of the recursive ordinals) and eps0 representing ε0.

8The command opts followed by text, tex or both controls the output format. In addition there is a
member function, .cpp, that outputs an ordinal notation as C++ code and command cppList that outputs
all user defined notations in C++ code. These are useful in writing C++ code using the calculator C++ classes
directly.
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sequence that have the ordinal represented by α as there union write α.listElts(n)9. The
help command provides online documentation.

2 Recursive ordinal notations and the Cantor normal

form

The ordinal calculator assigns strings as notations to an initial fragment of the recursive
ordinals. It contains a recursive process for deciding the relative size (<,=, or >) of the
ordinals represented by each string and a recursive process for deciding if a given string
represents an ordinal. Section 5 describes an expansion of this recursive ordinal notation
system that represents ωCK

1 (the Church-Kleene ordinal, the ordinal of the recursive ordi-
nals) and larger countable ordinals. There are gaps in the ordinals with notations in this
expanded structure although the set of all notations in the system is recursively enumerable
and recursively ranked.

Greek letters represent both notations, the finite strings that represent ordinals, and the
ordinals themselves. The relative size of notations is the relative size of the ordinals they
represent. Notations are successors or limits if the ordinal they represent are.

There is a virtual Ordinal member function limitElement(n) on the integers that
outputs an increasing sequence of ordinal notations with increasing n. If notation α represents
recursive ordinal, the union of the ordinals represented by the outputs of α.limitElement(n)
is the ordinal represented by α. Every ordinal, α, can be represented as shown in expression 1

α1 > α2 > α3 > ... > αk

The αk are ordinal notations and the nk are integers > 0.

ωα1n1 + ωα2n2 + ωα3n3 + ...+ ωαknk (1)

The calculator input format represents ω as w. The above expression is written as:
a=w^a1*n1+w^a2*n2+w^a3*n3+...+w^ak*nk. The n1...nk are integers and the a1...ak

are variables for previously defined ordinal notations or notations in parenthesis. The equal
sign assigns the specified notation to variable a.

ε0 =
⋃
ω, ωω, ωω

ω
ωω

ωω

... and cannot be reached with ωα, the integers and ω. The Cantor
normal form gives unique representation only for ordinals < ε0. Each term in expression 1 is
represented by a member of class CantorNormalElement. The terms are linked in decreas-
ing order in class Ordinal. This base class can represent any ordinal < ε0. The integers
used to define finite ordinals10 are scanned and processed with a library that supports arbi-
trarily large integers11. The Ordinal instance representing ω is predefined. Larger ordinals

9Sometimes mathematical notation is combined with C++ code. In this example the C++ definition of a
member function is combined with a Greek letter to represent the C++ object (an Ordinal notation) that
the subroutine is called from.

10The syntax for defining the ordinal 12 named ‘a’ is ‘Ordinal a(12);’ in C++ and ‘a=12’ in the interactive
ordinal calculator.

11The package used is MPIR, (Multiple Precision Integers and Rationals) based on the package GMP
(GNU Multiple Precision Arithmetic Library). Either package can be used, but only MPIR is supported on
Microsoft operating systems.
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in the base class are constructed using the integers, ω and three ordinal operators, +,× and
exponentiation.

3 The Veblen hierarchy

The Veblen hierarchy[22, 14, 9, 16] extends the Cantor normal form by defining functions that
grow much faster than ordinal exponentiation. These define ordinal notations much larger
than ε0. The Veblen hierarchy is developed in two stages. The first involves expressions
of a fixed finite number of parameters. The second involves functions definable as limits of
sequences of functions of an increasing number of parameters.

3.1 Two parameter Veblen function

The Veblen hierarchy starts with a function of two parameters, ϕ(α1, α2) based on ϕ(α) = ωα.
ϕ(1, α2) is defined as the α2 fixed point of ωα and is written as εα2 .

ϕ(2, 0) =
⋃
ε1, εε1+1, εεε1+1+1, ...

and

ϕ(2, α2 + 1) =
⋃
ϕ(2, α2), ϕ(1, ϕ(2, α2) + 1), ϕ(1, ϕ(1, ϕ(2, α2) + 1) + 1), ...

Each element of the sequence, past the first, takes the previous element as the second pa-
rameter. If limitElement computes a limit ordinal as a parameter, it often adds 1 to that
parameter to avoid fixed points. This is reflected in the examples.

The ordinal calculator plain text format for ϕ(α1, α2) is psi(a1,a2). The calculator uses
three common substitutions in expressions in the Veblen hierarchy. These are: ωα = ϕ(α),
ε(α) = ϕ(1, α) and Γ(α) = ϕ(1, 0, α). These substitutions are used in tables 2, 3, 4 and 6.
The plain text versions are w^a for ωα, epsilon(a) for ε(α) and gamma(a) for Γ(α).

Table 1 defines the two parameter Veblen function. In some cases the table gives an
inductive definition on the integers. It defines ϕ(...)0 and then ϕ(...)n+1 using ϕ(...)n. Finally
ϕ(...) is defined as an infinite union over the integers.

If α2 a limit in ϕ(α1, α2) then the limit of the expression is expanded by expanding the
limit α2. If the least significant nonzero parameter is a limit, then it must be expanded first
by limitElement and related functions. Consider ϕ(ω, ω). ∀n∈ωϕ(n + 1, 0) > ϕ(n, ω) and
thus

⋃
n∈ω ϕ(n, ω) =

⋃
n∈ω ϕ(n + 1, 0) = ϕ(ω, 0). With this in mind, if the least significant

parameter is a successor and the the next least significant parameter is a limit, one must
exercise care to make sure both parameters affect the result. Examples of the two parameter
Veblen function are in in Table 212.

12In the ordinal calculator an exit code is assigned to all code fragments that compute the sequences that
define the value of a limit ordinal. These are included in some tables as the right most column labeled X.
These are documented in [3] and used to verify that the regression tests include all cases. They are available
in the interactive calculator using member function lec. They are included here to connect examples of
sequences that define limit notations with the rules they come from and to insure the tables are complete.
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Definition of ϕ(α1, α2)
L is lines in Table 2. X is an exit code (see Note 12). L X

ϕ(α2) = ωα2 . 1 C
ϕ(1, α2) = εα2 . α2 a successor 3 FD

α2 a limit 4 FL
If α1 and α2 are successors, define
ϕ(α1, α2)0 = ϕ(α1, α2 − 1) and define
ϕ(α1, α2)n+1 = ϕ(α1 − 1, ϕ(α1, α2)n) + 1 then by induction on n
ϕ(α1, α2) =

⋃
n∈ω ϕ(α1, α2)n which expands to

ϕ(α1, α2) =
⋃
ϕ(α1, α2 − 1), ϕ(α1 − 1, ϕ(α1, α2 − 1) + 1) + 1,

ϕ(α1 − 1, ϕ(α1 − 1, ϕ(α1, α2 − 1) + 1) + 1) + 1, ...,. 10 FD
If α2 is a limit, then
ϕ(α1, α2) =

⋃
β∈α2

ϕ(α1, β). 8 FL
If α1 is a limit and α2 is a successor then
ϕ(α1, α2) =

⋃
β∈α1

ϕ(β, ϕ(α1, α2 − 1) + 1). 12 FN

Table 1: Two parameter Veblen function definition

α α.limitElement(n)
n=1 n=2 n=3 X

1 ωω
2

ωω ωω2 ωω3 C

2 ε1 ε0 ωε0+1 ωω
ε0+1

FD

3 ε2 ε1 ωε1+1 ωω
ε1+1

FD
4 εω ε1 ε2 ε3 FL
5 ϕ(2, 1) ϕ(2, 0) εϕ(2,0)+1 εεϕ(2,0)+1+1 FD

6 ϕ(2, 2) ϕ(2, 1) εϕ(2,1)+1 εεϕ(2,1)+1+1 FD

7 ϕ(2, 5) ϕ(2, 4) εϕ(2,4)+1 εεϕ(2,4)+1+1 FD

8 ϕ(2, ω) ϕ(2, 1) ϕ(2, 2) ϕ(2, 3) FL
9 ϕ(3, 1) ϕ(3, 0) ϕ(2, ϕ(3, 0) + 1) ϕ(2, ϕ(2, ϕ(3, 0) + 1) + 1) FD

10 ϕ(3, 2) ϕ(3, 1) ϕ(2, ϕ(3, 1) + 1) ϕ(2, ϕ(2, ϕ(3, 1) + 1) + 1) FD
11 ϕ(ω, 1) εϕ(ω,0)+1 ϕ(2, ϕ(ω, 0) + 1) ϕ(3, ϕ(ω, 0) + 1) FN
12 ϕ(ω, 9) εϕ(ω,8)+1 ϕ(2, ϕ(ω, 8) + 1) ϕ(3, ϕ(ω, 8) + 1) FN
13 ϕ(ω, ω) ϕ(ω, 1) ϕ(ω, 2) ϕ(ω, 3) FL
14 ϕ(ω, ω + 2) εϕ(ω,ω+1)+1 ϕ(2, ϕ(ω, ω + 1) + 1) ϕ(3, ϕ(ω, ω + 1) + 1) FN

Table 2: Two parameter Veblen function exanples
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3.2 Finite parameter Veblen functions

The finite parameter Veblen function generalizes the two parameter Veblen function to n
parameters for all integers n. This section defines how it is computed. The definition of
a notation for a recursive limit ordinal must define a recursively enumerable sequence of
notations such that the union of ordinals they represent is the ordinal represented by the
original notation. This sequence uses the original notation modified by replacing parameters.
The replacement can use the previous notation in the sequence. One or two parameters are
replaced and they are usually the least significant parameters and/or the least significant
nonzero parameters. For the Veblen hierarchy the most significant parameters always occur
first in reading from left to right.

Following are the rules that apply to the finite parameter Veblen hierarchy.

1. The hierarchy starts with ϕ(α) = ωα and ϕ(1, α) = εα.

2. In some of the substitutions, when the substituted parameter is a limit, 1 is added to
avoid fixed points.

3. If notation α has least significant nonzero parameter β, a limit, then α represents the
union of a sequence of ordinals with the same notation as α except β is replaced by a
sequence of notations that have β as their limit. See lines 7 and 11 in Table 4 (exit
code FL).

4. If notation α has least significant parameter γ which is a successor and the next most
significant nonzero parameter, β, is a limit, then the sequence replaces β with a se-
quence that has β as its limit and the parameter to its immediate right with α with
one subtracted from the γ parameter. See lines 5 and 6 in Table 4 (exit code FN).

5. If notation α has least significant nonzero notation β, a successor, and one or more
less significant parameters of 0, then α represents the ordinal that is the limit of the
sequence starting with the notation for α with 1 subtracted from β and the next (to
the right) parameter changed from 0 to 1 to support the special case of a subtraction
result of 0. Subsequent sequence values have a similar replacement with the next (to
the right) parameter replaced with the previous element in the sequence. See lines 8
and 12 in Table 4 (exit code FB). Line 12 is the special case when the only nonzero
parameter is 1 and all members of the sequence that define α have one less parameter
than α.

6. If notation α’s least significant parameter, β, is a successor, the next to the least
most significant parameter is zero and the next to the least most significant nonzero
parameter, γ, is a successor, then the first element in the sequence that defines α is
similar to α with 1 subtracted from β. Subsequent members of the sequence have
one subtracted from γ and the parameter to the immediate right is replaced with the
previous element in the sequence. See lines 9 and 10 in Table 4 (exit code FD).

7. Items 4 and 6 above include cases where the least significant nonzero parameter has
no effect on the limit that defines the sequence. Those parameters are left unchanged
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α α.limitElement(n)
n=1 n=2 n=3

ϕ(1, 1, 0) Γ1 ΓΓ1+1 ΓΓΓ1+1+1

ϕ(1, 1, 1) ϕ(1, 1, 0) Γϕ(1,1,0)+1 ΓΓϕ(1,1,0)+1+1

ϕ(1, 1, 2) ϕ(1, 1, 1) Γϕ(1,1,1)+1 ΓΓϕ(1,1,1)+1+1

ϕ(1, 1, ω) ϕ(1, 1, 1) ϕ(1, 1, 2) ϕ(1, 1, 3)
ϕ(1, 2, 1) ϕ(1, 2, 0) ϕ(1, 1, ϕ(1, 2, 0) + 1) ϕ(1, 1, ϕ(1, 1, ϕ(1, 2, 0) + 1) + 1)
ϕ(1, 2, 2) ϕ(1, 2, 1) ϕ(1, 1, ϕ(1, 2, 1) + 1) ϕ(1, 1, ϕ(1, 1, ϕ(1, 2, 1) + 1) + 1)
ϕ(1, 2, 5) ϕ(1, 2, 4) ϕ(1, 1, ϕ(1, 2, 4) + 1) ϕ(1, 1, ϕ(1, 1, ϕ(1, 2, 4) + 1) + 1)
ϕ(1, ω, 0) ϕ(1, 1, 0) ϕ(1, 2, 0) ϕ(1, 3, 0)
ϕ(1, ω, 1) ϕ(1, 1, ϕ(1, ω, 0) + 1) ϕ(1, 2, ϕ(1, ω, 0) + 1) ϕ(1, 3, ϕ(1, ω, 0) + 1)
ϕ(2, 2, ω) ϕ(2, 2, 1) ϕ(2, 2, 2) ϕ(2, 2, 3)
ϕ(3, 1, 1) ϕ(3, 1, 0) ϕ(3, 0, ϕ(3, 1, 0) + 1) ϕ(3, 0, ϕ(3, 0, ϕ(3, 1, 0) + 1) + 1)
ϕ(4, 3, 2) ϕ(4, 3, 1) ϕ(4, 2, ϕ(4, 3, 1) + 1) ϕ(4, 2, ϕ(4, 2, ϕ(4, 3, 1) + 1) + 1)
ϕ(ω, 3, 2) ϕ(ω, 3, 1) ϕ(ω, 2, ϕ(ω, 3, 1) + 1) ϕ(ω, 2, ϕ(ω, 2, ϕ(ω, 3, 1) + 1) + 1)

Table 3: Three parameter Veblen function examples

α α.limitElement(n)
n=1 n=2 n=3

1 ϕ(1, 0, 0, 0) Γ0 ϕ(Γ0 + 1, 0, 0) ϕ(ϕ(Γ0 + 1, 0, 0) + 1, 0, 0)
2 ϕ(1, 0, 0, 1) ϕ(1, 0, 0, 0) ϕ(ϕ(1, 0, 0, 0) + 1, 0, 1) ϕ(ϕ(ϕ(1, 0, 0, 0) + 1, 0, 1) + 1, 0, 1)
3 ϕ(ω, 0, 0, 0) ϕ(1, 0, 0, 0) ϕ(2, 0, 0, 0) ϕ(3, 0, 0, 0)
4 ϕ(ω, 0, 0, 1) ϕ(1, ϕ(ω, 0, 0, 0) + 1, 0, 1) ϕ(2, ϕ(ω, 0, 0, 0) + 1, 0, 1) ϕ(3, ϕ(ω, 0, 0, 0) + 1, 0, 1)
5 ϕ(ω, 0, 0, 4) ϕ(1, ϕ(ω, 0, 0, 3) + 1, 0, 4) ϕ(2, ϕ(ω, 0, 0, 3) + 1, 0, 4) ϕ(3, ϕ(ω, 0, 0, 3) + 1, 0, 4)
6 ϕ(ω, 0, 0, 5) ϕ(1, ϕ(ω, 0, 0, 4) + 1, 0, 5) ϕ(2, ϕ(ω, 0, 0, 4) + 1, 0, 5) ϕ(3, ϕ(ω, 0, 0, 4) + 1, 0, 5)
7 ϕ(ω, 0, 0, ω) ϕ(ω, 0, 0, 1) ϕ(ω, 0, 0, 2) ϕ(ω, 0, 0, 3)
8 ϕ(ω, 5, 0, 0) ϕ(ω, 4, 1, 0) ϕ(ω, 4, ϕ(ω, 4, 1, 0) + 1, 0) ϕ(ω, 4, ϕ(ω, 4, ϕ(ω, 4, 1, 0) + 1, 0) + 1, 0)
9 ϕ(ω, 5, 0, 1) ϕ(ω, 5, 0, 0) ϕ(ω, 4, ϕ(ω, 5, 0, 0) + 1, 1) ϕ(ω, 4, ϕ(ω, 4, ϕ(ω, 5, 0, 0) + 1, 1) + 1, 1)

10 ϕ(ω, 5, 0, 9) ϕ(ω, 5, 0, 8) ϕ(ω, 4, ϕ(ω, 5, 0, 8) + 1, 9) ϕ(ω, 4, ϕ(ω, 4, ϕ(ω, 5, 0, 8) + 1, 9) + 1, 9)

11 ϕ(ω, ε0, 0, 0) ϕ(ω, ω, 0, 0) ϕ(ω, ωω , 0, 0) ϕ(ω, ωω
ω
, 0, 0)

12 ϕ(1, 0, 0, 0, 0) ϕ(1, 0, 0, 0) ϕ(ϕ(1, 0, 0, 0) + 1, 0, 0, 0) ϕ(ϕ(ϕ(1, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0)

Table 4: More than three parameter Veblen function examples

in the ordinal calculator for the cases that do not matter. Examples include lines 5, 6
and 10 in Table 4.

Three parameter Veblen function examples are shown in Table 3 and larger examples in
Table 4.

3.3 Transfinite Veblen functions

The limit of the finite parameter Veblen functions is the union of the sequence ϕ(1), ϕ(1, 0), ϕ(1, 0, 0), ...,.
To represent this and larger ordinals, the notation for finite parameter Veblen functions is
expanded with the ordinal notation subscript γ in the following expression.

ϕγ(α1, α2, ..., αn) (2)

The ordinal calculator plain text format for this is psi_{g}(a1,a2,...,an). The above
sequence is defined to be ϕ1.

9



Definition of ϕγ(α)
L is lines in Table 6. X is an exit code (see Note 12). L X

ϕ1 =
⋃
ϕ(1), ϕ(1, 0), ϕ(1, 0, 0), ..., . 1 IG

ϕγ+1 =
⋃
ϕγ(ϕγ + 1), ϕγ(ϕγ + 1, 0), ϕγ(ϕγ + 1, 0, 0), ..., 9 IG

If γ is a limit and α = 0 then
ϕγ =

⋃
β∈γ ϕβ. 7 IJ

If γ and α are successors then
ϕγ(α) =

⋃
ϕγ(α− 1) + 1, ϕγ−1(ϕγ(α− 1) + 1, 0), ϕγ−1(ϕγ(α− 1) + 1, 0, 0), ...,. 5 II

If γ is a limit and α is a successor then
ϕγ(α) =

⋃
β∈γ ϕβ(ϕγ(α− 1) + 1). 10 IK

Table 5: Definition of ϕγ(α)

The transfinite Veblen function is built on the finite parameter Veblen function. If ζ
is a transfinite Veblen notation, then the rules for defining ζ.limitElement(n) include
the numbered rules in Section 3.2. When those rules are applicable, the γ parameter is
unchanged and copied from ζ to ζ.limitElement(n). γ is changed only if the single nonzero
α parameter is a successor and the least significant α parameter. The rules for this are given
in in Table 5. The right column, X, gives the exit code described in Note 12. Table 6 gives
examples of the transfinite Veblen function, the associated first 3 values of limitElement(n)
and the corresponding exit code. These codes each refer to either Table 5 or the enumerated
list in Section 3.2.

The C++ coding of limitElement when the same rules are used for two classes of no-
tations (like the finite and transfinite Veblen functions) involves two steps. First the higher
level limitElement explicitly calls the lower class version to handle some cases. In C++ this
is done by explicitly referencing the lower class as in lower class name::limitElement(n).
The second step, in the lower class function, creates an output Ordinal of the required
class. This is done by calling a virtual function of the Ordinal instance that limitElement
was originally called from. The creating virtual function calls the constructor for the
Ordinal derived subclass being generated Before calling this constructor. it fills in pa-
rameters defined only at the higher class level and that are not modified in computing
limitElement(n). As the ordinal calculator was expanded to define more ordinal notation
classes, this approach was increasingly helpful.

Finally it is worth noting that the constructor is not called directly. The constructor is
called from a function that evaluates possible fixed points generated by the parameters of
the notation to creates a unique notation for each ordinal represented in the system. Direct
calls to the constructor can create non unique notations.

4 Limitations of ordinal notations

There are at least two ways one can develop and extend the recursive ordinal hierarchy.
One is with a recursively enumerable set of ordinal notations and a recursive function that
determines the ranking of any two notations in the system. This ranking can be used to
recursively compute a unique notation for every ordinal represented in the system. The

10



α α.limitElement(n)
n=1 n=2 n=3 X

1 ϕ1 ω ε0 Γ0 IG
2 ϕ1(1, 0, 0) ϕ1(1, 0) ϕ1(ϕ1(1, 0) + 1, 0) ϕ1(ϕ1(ϕ1(1, 0) + 1, 0) + 1, 0) FB
3 ϕ1(1, 0, 1) ϕ1(1, 0, 0) ϕ1(ϕ1(1, 0, 0) + 1, 1) ϕ1(ϕ1(ϕ1(1, 0, 0) + 1, 1) + 1, 1) FD
4 ϕ3(1) ϕ3 + 1 ϕ2(ϕ3 + 1, 0) ϕ2(ϕ3 + 1, 0, 0) II
5 ϕ3(2) ϕ3(1) + 1 ϕ2(ϕ3(1) + 1, 0) ϕ2(ϕ3(1) + 1, 0, 0) II
6 ϕ5(ω) ϕ5(1) ϕ5(2) ϕ5(3) FL
7 ϕω ϕ1 ϕ2 ϕ3 IJ
8 ϕω(1) ϕ1(ϕω + 1) ϕ2(ϕω + 1) ϕ3(ϕω + 1) IK
9 ϕω+5 ϕω+4(ϕω+4 + 1) ϕω+4(ϕω+4 + 1, 0) ϕω+4(ϕω+4 + 1, 0, 0) IG

10 ϕωω (8) ϕω(ϕωω (7) + 1) ϕω2(ϕωω (7) + 1) ϕω3(ϕωω (7) + 1) IK

Table 6: Transfinite Veblen function examples

Veblen hierarchy[22] and its extensions, that includes ordinal collapsing (see Section 5.2),
are examples. This type of notation is used in the ordinal calculator.

Kleene’s O, defines a notation for every recursive ordinal. However the set of all these
notations is not recursively enumerable. Every infinite recursive ordinal has multiple no-
tations in O and no recursive algorithm can determine the relative size of all notations in
O. Both notation systems, the Veblen hierarchy and Kleene’s O, have a limit on effective
notation systems for recursive ordinals. In the first case the limit is of the notations defined
in the system. In the case of Kleene’s O it is the limit of unique notations in recursive and
hyperarithmetical progressions of notations in O[15].

One cannot construct a recursive system of recursively ranked notations for all recursive
ordinals. The ordinal calculator constructs notations for an initial segment of the recursive
ordinals and for the ordinal of the recursive ordinal, ωCK

1 , and many larger ordinals. Such a
system must be incomplete with many gaps starting with the gap between the limit of the
recursive ordinals defined in the system and ωCK

1 .
The ordinal calculator notations ≥ ωCK

1 are based in part on generalizing the idea in O
of indexing the notation for a limit ordinals with the integers or finite ordinals. For any α,
a limit ordinal notation in O, one can construct a recursive function on the integers that
enumerates an infinite sequence of notations, such that the union of the ordinals represented
by notations in the sequence is the ordinal α represents. The ordinal calculator generalizes
this idea by defining levels of ordinals indexed by notations at a lower level. The first level is
the integers or finite ordinals. The next level is the recursive ordinals. The first level beyond
the recursive ordinals has both limits indexed by all recursive ordinal notations and limits
indexed by the integers. The notations for limit ordinals must encode the type or parameter
they are indexed with. The idea of recursive functions defined on a hierarchy of types is a
bit reminiscent of the typed hierarchy of Principia Mathematica[23].

Although a domain that includes notations for all recursive ordinals cannot be recursively
enumerable, recursive functions operating on that domain can use its properties to insure
the output for any valid input will have the required properties. This imposes constraints
on virtual functions, such as limitElement and compare to insure new classes can be
added to expand the notation. For example the compare function must check to see if its
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argument comes from a derived class13 which may not have been defined when this version
of compare was written. In this case, if term1 and term2 are CantorNormalElements in an
Ordinal expression, then term1.compare(term2) returns -term2.compare(term1) calling
compare in the higher level derived class.

5 Notations for the Church-Kleene ordinal and beyond

The countable admissible ordinals are the staring point for extending the ordinal calculator
to and beyond ωCK

1 . The first two admissible ordinals are ω and ωCK
1 . Subsequent countable

admissible ordinals are defined as Kleene’s O is, but using a TM with an oracle for previously
defined notations[20, 21]. There are limits of sequences of admissible ordinals that are not
themselves admissible. For example this is true of the first ω admissible ordinals. These
limit ordinals are part of the hierarchy of admissible ordinals in the calculator.

5.1 Notations for countable admissible ordinals

The notation for countable admissible ordinals in the ordinal calculator is ωκ. κ is the index
in the admissible hierarchy starting with ω0 = ω and ω1 = ωCK

1 . The notation is extended
to ωκ,γ(α1, α2, ..., αn) to define some of the values between admissible ordinals. The ordinal
calculator plain text format is w_{k,g}(a1,a2,...,an)14. The γ and αi parameters have a
definition based in part on the Veblen hierarchy. Thus, for example, ω1(ω) and ω1(1, 2) use
rules 3 and 6 with exit codes FL and FD in the list in Section 3.2. Having the same exit
code means they are computed by the same code fragment as described in Section 3.3. New
rules and code are required only for some instances of ωκ,γ(α). If there is more than one α
parameter, αn is a limit or γ > 0 then the existing rules apply. The new rules are in Table 7.

If there are no parameters except κ (γ and all α are 0) then new rules and an ex-
panded approach to defining notations for limit ordinals is required. The smallest example
is ω1. It is the first limit ordinal notation that cannot be fully indexed by the integers. It
must be indexed by notations for recursive ordinals. The Ordinal virtual member func-
tion limitOrd(α) is defined to support this. This is used to expand limits somewhat as
limitElement(n) is15.

Notations have an associated limit type. For example the limit type of ω1 is the recursive
ordinals, however the limit type of ωw is the integers since it is the union of ω1, ω2, ω3, ...,. If

13The kernel version of compare, which does most of the work, acts on the terms that make up the Cantor
normal form expression of an Ordinal. These terms belong to the base class CantorNormalElement. The
kernel version of compare is a member function of this class. As the Ordinal class is expanded so is
CantorNormalElement. As new classes are derived from this base class they are assigned an incremented
integer level which can be accessed with term.codeLevel where term is a CantorNormalElement. This
facility is used by compare to check if its argument is at a higher class level.

14The calculator plain text output format expands ‘w ’ to ‘omega ’. Either version can be input.
15limitElement(n) is defined for limits that require limitOrd(α) but it can only compute an initial

fragment of the defining notations. Like limitElement, limitOrd has its own exit codes (see Note 12).
These codes are not listed here. They are documented in [3] and are important in insuring that the set of
regression tests is complete.

12



Definition of ωκ(α) for α a successor

L is lines in Table 9. X is an exit code (see Note 12). L X

If κ = 1 and α is a successor define

ω1(α)0 = ω1(α− 1) and define

ω1(α)n+1 = ϕω1(α)n+1(α− 1) then

ω1(α) =
⋃
n∈ω ω1(α)n which expands to

ω1(α) = ω1(α− 1), ϕω1(α−1)+1(α− 1), ...,. 5 LCCI

If κ and α are successors and κ > 1 then define

ωκ(α)0 = ωκ(α− 1) and define

ωκ(α)n+1 = ωκ−1,ωκ(α)n+1(α− 1) then

ωκ(α) =
⋃
n∈ω ωκ(α)n which expands to

ωκ(α) =
⋃
ωκ(α− 1), ωκ−1,ωκ(α−1)+1(α− 1), ...,. 7, 9 LCDP

If κ is a limit and α is a successor

ωκ(α) =
⋃
ζ∈κ ωζ,ωκ(α−1)+1. 11 12 LCEL

Section 3.2 defines ωκ,γ(α1, α2, ..., αn) if γ > 0 ∨ n > 1 ∨ αn a limit.

Table 7: Definition of ωκ(α) for α a successor

the least significant nonzero parameter β of an ordinal ζ is a limit, then the limit type of ζ
is the limit type of β.

The value of ωκ.limitOrd(η) for κ a successor is expressed in the notation ωκ[η]. The
plain text format for this is w_{k}[e]. This is the first case where the presence of a parameter
in an Ordinal definition leads to a smaller Ordinal than if it were absent. This holds for all
square bracketed parameters. This syntax with a square bracketed suffix is only meaningful
(and accepted in the ordinal calculator) if all previously described parameters except κ are
0 and κ represents a successor. In addition η must meet constraints on limit type.

Limit type is implemented primarily through the member functions limitType and
maxLimitType. limitType is determined by the least significant (nonzero sometimes) one
or two parameters. maxLimitType is determined by the maximum limit type of all pa-
rameters and the value of κ16. α.limitOrd(β) is a valid expression if α.limitType() >
β.maxLimitType(). In addition parameters with a square bracketed suffix (either single or
double as described in Section 5.2) are allowed if α.limitType() = β.maxLimitType() and
β < α.

16The limit type of ωκ is κ+1 if κ is finite and κ otherwise. The limit type of the integers and all successor
notations is 0. Limit ordinals < ω1 have a limit type of 1. These limits have integer indices. The limitType

and maxLimitType member functions are available in the interactive calculator.
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By definition ωκ =
⋃
η<ωκ ωκ[η]. Many values of η will not be defined in a recursive

system of notations, but the system should be expandable to support any of them. This
is an example of explicit incompleteness. ωκ[η] and thus ωκ.limitOrd(η) could be defined
to be η. This is the identity function. However the goal is to define notations for as many
ordinals as possible. Thus the function diagonalizes what has previously been defined. In
doing so it must make sure that (η < ωκ)→ (ωκ.limitOrd(η) < ωκ). This rules for this are
in Table 8.

There are three classes of notations that require ζ.limitOrd(β).

1. If the least significant nonzero parameter of ζ is υ a limit notation with limit type
greater than the integers, then the parameter υ is replaced with υ[β].

2. If the least significant nonzero parameter of ζ, αm, (one of the αn in expression 2)
represents a successor and the next least significant nonzero parameter, υ (either γ or
one of the αn in expression 2) represents an ordinal with limit type greater than the
integers, then υ is replaced with υ[β]. In addition the most significant parameter (zero
or nonzero) less significant than υ is replaced with the original value of α except 1 is
subtracted from αm.

3. If κ is the least significant nonzero parameter of ζ then ζ.limitOrd(β) = ζ[β].

For notations for ordinals ≥ ωCK
1 , the compare virtual member function works as defined

in Section 1.1. As a consequence the incomplete ordinal notation hierarchy defined at any
point in this process has a recursive well ordering implemented in the ordinal calculator.
Thus the hierarchy and/or parts of it can be embedded within itself to fill some of the gaps
between already defined notations. This is a bit like the Mandelbrot set[13] which repeatedly
embeds its entire structure within itself. The embeddings of parts of ordinal notation within
itself to fill in the gaps are a form of ordinal projection or collapsing.

5.2 Admissible ordinals and projection

Projection or collapsing uses the names of uncountable cardinals[14, 16] or countable admis-
sible ordinals ≥ ωCK

1 [17] to extend the recursive ordinal hierarchy. A similar approach can
both expand recursive ordinal notations and partially fill some of the gaps that must occur
in a recursive system of notations that represents ordinals ≥ ωCK

1 . This section describes an
approach to ordinal projection used in the calculator.

This version of ordinal projection prepends a notation, δ, in double square brackets as
in [[δ]]ωκ. The plain text for this is [[d]]w_{k}. δ must be a successor ≤ κ. The δ prefix
imposes a limiType of δ if δ is finite and δ − 1 otherwise17. Recall that the limitType of
ωκ is κ + 1 if κ is finite and κ otherwise. The δ prefix also requires that any output from
limitElement or limitOrd that is ≥ ωδ must have the same δ prefix prepended to it. In
addition a double bracketed suffix is defined such that [[δ]]wκ.limitOrd(β) = [[δ]]wκ[[β]].
The plain text for this is [[d]]w_{k}[[b]]. The double bracketed suffix diagonalizes the
ordinals definable with a single bracketed suffix. See tables 10 and 11 for the double bracketed
prefix and suffix definitions that require new rules.

17Note the δ prefix can never be a limit.
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Definition of ωκ and ωκ[η]

L is lines in Table 9. X is an exit code (see Note 12). L X

If κ is a successor then

ωκ =
⋃
β<ωκ ωκ[β]. 4 LEDC

ω1[1] =
⋃
ω, ϕω, ϕϕω+1, ϕϕϕω+1+1, ϕϕϕϕω+1+1+1, ...,. 1 DDBO

If η > 1 and a successor and κ = 1 then define

ω1[η]0 = ω1[η − 1] and define

ω1[η]n+1 = ϕω1[η]n+1 then

ω1[η] =
⋃
n∈ω ω1[η]n which expands to

ω1[η] =
⋃
ω1[η − 1], ϕω1[η−1]+1, ϕϕω1[η−1]+1+1, ...,. 2 DDCO

If η = 1 and κ > 1 is a successor then define

ωκ[1]0 = ωκ−1 and define

ωκ[1]n+1 = ωκ−1,ωκ[1]n+1 then

ωκ[1] =
⋃
n∈ω ωκ[1]n which expands to

ωκ[1] =
⋃
ωκ−1, ωκ−1,ωκ−1+1, ωκ−1,ωκ−1,ωκ−1+1+1, ...,. 8 DCDO

If κ and η are successors > 1 define

ωκ[η]0 = ωκ[η − 1] and define

ωκ[η]n+1 = ωκ−1,ωκ[η]n+1 then

ωκ[η] =
⋃
n∈ω ωκ[η]n which expands to

ωκ[η] =
⋃
ωκ[η − 1], ωκ−1,ωκ[η−1]+1, ...,. 6 DCES

If η is a limit then

ωκ[η] =
⋃
ζ<η ωκ[ζ ]. 3 DCAL

If κ is a limit then η must be 0 and

ωκ =
⋃
ζ<κ ωζ . 14 LCBL

Table 8: Definition of ωκ and ωκ[η]
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α α.limitElement(n)

n=1 n=2 n=3 X

1 ω1[1] ω ϕω ϕϕω+1 DDBO

2 ω1[3] ω1[2] ϕω1[2]+1 ϕϕω1[2]+1+1 DDCO

3 ω1[ω] ω1[1] ω1[2] ω1[3] DCAL

4 ω1 ω1[1] ω1[2] ω1[3] LEDC

5 ω1(12) ω1(11) ϕω1(11)+1(11) ϕϕω1(11)+1(11)+1(11) LCCI

6 ω3[3] ω3[2] ω2,ω3[2]+1 ω2,ω2,ω3[2]+1+1 DCES

7 ω3(5) ω3(4) ω2,ω3(4)+1(4) ω2,ω2,ω3(4)+1(4)+1(4) LCDP

8 ω5[1] ω4 ω4,ω4+1 ω4,ω4,ω4+1+1 DCDO

9 ω5(8) ω5(7) ω4,ω5(7)+1(7) ω4,ω4,ω5(7)+1(7)+1(7) LCDP

10 ω5,8 ω5,7(ω5,7 + 1) ω5,7(ω5,7 + 1, 0) ω5,7(ω5,7 + 1, 0, 0) IG

11 ωω(5) ω1,ωω(4)+1 ω2,ωω(4)+1 ω3,ωω(4)+1 LCEL

12 ωω(8) ω1,ωω(7)+1 ω2,ωω(7)+1 ω3,ωω(7)+1 LCEL

13 ωω,8 ωω,7(ωω,7 + 1) ωω,7(ωω,7 + 1, 0) ωω,7(ωω,7 + 1, 0, 0) IG

14 ωεωω ωεω+1 ωε
ω2+1 ωε

ω3+1 LCBL

Table 9: Example notations ≥ ω1[1]
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The ordinal notations in the calculator reference ordinals ≥ ωCK
1 but the notations defined

within a specific recursive system are recursively well ordered and thus can be used to expand
the recursive ordinal hierarchy as well as the gaps between notations for lager ordinals. The
δ prefix allows the use of notations with any value of κ to index smaller ordinals. Note
[[δ]]ωκ < ωδ < [[δ + 1]]ωδ+1 for all κ ≥ δ.

17



Definition of [[δ]]ωκ, [[δ]]ωκ[[η]] and [[δ]]ωκ[η]

δ must be a successor with δ ≤ κ.

If δ = κ in [[δ]]ωκ[η] then the δ prefix is dropped.

L is example line(s) in Table 12. X is an exit code (see Note 12).

L X

If κ is a successor then

[[δ]]ωκ =
⋃
η<[[δ]]ωκ[[δ]]ωκ[[η]]. 3, 8 LEDE

If κ is a limit then

[[δ]]ωκ =
⋃
α<κ∧α>δ[[δ]]ωα 13 LEEE

If κ = δ and η = 1 define

[[δ]]ωδ[[1]]0 = ω and define

[[δ]]ωδ[[1]]n+1 = ωδ[ωδ[[1]]n + 1] then

[[δ]]ωδ[[1]] =
⋃
n∈ω[[δ]]ωδ[[1]]n which expands to

[[δ]]ωδ[[1]] =
⋃
ω, ωδ[ω], ωδ[ωδ[ω], ωδ[ωδ[ωδ[ω]], ...,. 1, 9 DCBO

If κ > δ, κ a successor and η = 1 define

[[δ]]ωκ[[1]]0 = [[δ]]ωκ−1 and define

[[δ]]ωκ[[1]]n+1 = ωκ−1,[[δ]]ωκ[[1]]n+1 then

[[δ]]ωκ[[1]] =
⋃
n∈ω[[δ]]ωκ[[1]]n which expands to

[[δ]]ωκ[[1]] =
⋃
[[δ]]ωκ−1, ωκ−1,[[δ]]ωκ−1+1,

ωκ−1,ωκ−1,[[δ]]ωκ−1+1
, ...,. 11 DCDO

If η > 1 is a successor then

[[δ]]ωκ[[η]]0 = [[δ]]ωκ[[η − 1]] and define

[[δ]]ωκ[[η]]n+1 = [[δ]]ωκ[[[δ]]ωκ[[η]]n + 1] then

[[δ]]ωκ[[η]] =
⋃
n∈ω[[δ]]ωκ[[η]]n which expands to

[[δ]]ωκ[[η]] =
⋃
[[δ]]ωκ[[η − 1]],

[[δ]]ωκ[[[δ]]ωκ[[η − 1]] + 1],

[[δ]]ωκ[[[δ]]ωκ[[[δ]]ωκ[[η − 1]] + 1] + 1], ...,. 2, 5 DCCS

If η is a limit then

[[δ]]ωκ[[η]] =
⋃
β<η[[δ]]ωκ[[β]] and 14 DCAL

[[δ]]ωκ[η] =
⋃
β<η[[δ]]ωκ[β]. 10 DCAL

Table 10: Definition of [[δ]]ωκ, [[δ]]ωκ[[η]] and [[δ]]ωκ[η]
18



Definition of [[δ]]ωκ(α)

δ must be a successor with δ ≤ κ.

L is example line(s) in Table 12. X is an exit code (see Note 12).

L X

[[1]]ω1(1) =
⋃
[[1]]ω1, ϕ[[1]]ω1+1, ϕϕ[[1]]ω1+1+1, ...,. 4 LECK

If κ = δ ∧ κ > 1 then

[[κ]]ωκ(1) =
⋃
[[κ]]ωκ, ωκ−1,[[κ]]ωκ+1, ωκ−1,ωκ−1,[[κ]]ωκ+1+1, ...,. 6 LECK

If κ > 1 ∧ κ > δ ∧ α = 1 define

[[δ]]ωκ(1)0 = [[δ]]ωκ and define

[[δ]]ωκ(1)n+1 = [[δ]]ωκ−1,[[δ]]ωκ(1)n+1 then

[[δ]]ωκ(1) =
⋃
n∈ω[[δ]]ωκ(1)n which expands to

[[δ]]ωκ(1) =
⋃
[[δ]]ωκ, [[δ]]ωκ−1,[[δ]]ωκ+1,

[[δ]]ωκ−1,[[δ]]ωκ−1,[[δ]]ωκ+1+1, ...,. 7 LCDP

Table 11: Definition of [[δ]]ωκ(α)
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α α.limitElement(n)

n=1 n=2 n=3 X

1 [[1]]ω1[[1]] ω ω1[ω] ω1[ω1[ω]] DCBO

2 [[1]]ω1[[2]] [[1]]ω1[[1]] ω1[[[1]]ω1[[1]]] ω1[ω1[[[1]]ω1[[1]]]] DCCS

3 [[1]]ω1 [[1]]ω1[[1]] [[1]]ω1[[2]] [[1]]ω1[[3]] LEDE

4 [[1]]ω1(1) [[1]]ω1 ϕ[[1]]ω1+1 ϕϕ[[1]]ω1+1+1 LECK

5 [[1]]ω5[[3]] [[1]]ω5[[2]] [[1]]ω5[[[1]]ω5[[2]]] [[1]]ω5[[[1]]ω5[[[1]]ω5[[2]]]] DCCS

6 [[2]]ω2(1) [[2]]ω2 ω1,[[2]]ω2+1 ω1,ω1,[[2]]ω2+1+1 LECK

7 [[2]]ω3(1) [[2]]ω3 [[2]]ω2,[[2]]ω3+1 [[2]]ω2,[[2]]ω2,[[2]]ω3+1+1 LCDP

8 [[2]]ω8 [[2]]ω8[[1]] [[2]]ω8[[2]] [[2]]ω8[[3]] LEDE

9 [[3]]ω3[[1]] ω ω3[ω] ω3[ω3[ω]] DCBO

10 [[4]]ω8[ω] [[4]]ω8[1] [[4]]ω8[2] [[4]]ω8[3] DCAL

11 [[5]]ω6[1] [[5]]ω5 [[5]]ω5,[[5]]ω5+1 [[5]]ω5,[[5]]ω5,[[5]]ω5+1+1 DCDO

12 [[5]]ω7[4] [[5]]ω7[3] [[5]]ω6,[[5]]ω7[3]+1 [[5]]ω6,[[5]]ω6,[[5]]ω7[3]+1+1 DCES

13 [[5]]ωω [[5]]ω6 [[5]]ω7 [[5]]ω8 LEEE

14 [[8]]ω8[[ω]] [[8]]ω8[[1]] [[8]]ω8[[2]] [[8]]ω8[[3]] DCAL

Table 12: Example notations using projection

20



6 Ordinal projection with nested embedding

The embedding described in Section 5.2 is nested by expanding the single ordinal notation
prefix, δ to a sequence of paired notations written as δ︷σ18. The ︷σ is optional. The full
syntax is in Figure 1. The first δ must be ≤ κ it has the same effect as the single δ prefix
did in limiting the parameters for limitOrd. The remaining prefix parameters support
nested embedding. The idea is to embed previously defined notations inside themselves to
expand the recursive ordinals notations in the system and fill other gaps between notations.
The notations in the prefix index this embedding. Thus the prefix, going from left (most
significant) to right, contains the most significant parameters in the notation. Both the finite
parameter Veblen function and the notation prefix have significance going from left to right
but there is an important difference. The most significant parameter for the Veblen function
is the number of parameters. ϕ(1, 0, 0) > ϕ(99, 99). This is not true with nested embedding.
The most significant parameter is the leftmost value of the prefix. The next most significant
parameter is the number of δs in the prefix. Then the remainder of the prefix values going
from left to right, followed by κ and the remaining parameters.

In describing these notations, the cases for which there are new rules are those in which
the prefix of ζ differs from the prefix in ζ.limitOrd(β). This only occurs if κ = δm in the
notation ζ and one of the following three conditions are met.

1. κ is a limit and the only nonzero parameter not in the prefix.

2. The only nonzero parameters not in the prefix are κ and the single bracketed suffix [η]
which is a successor.

3. The only nonzero parameters not in the prefix are κ and the least significant α which
is a successor.

In all other cases computing υ = ζ.limitOrd(β) uses rules described in previous sections.
When new rules are needed to define limitElement and limitOrd, there are multiple

conditions that require the prefix to be decremented and multiple states it may be in that
require different algorithms to change it. Both the code and its documentation matches this
structure. For example several code fragments with different exit codes call the same subrou-
tines to manipulate the prefix. This documentation has a similar functional structure. The
exit codes no longer have a nearly one to one correspondence with rules. Table 13 gives some
conventions used in tables 14, 15 and 16. Table 14, describes the conditions that determine
when and how a prefix is decremented. Table 15 describes the new rules that involve prefix
changes defined in Table 14. These two tables together provide all inductive definitions of
sequences that define a limit ordinal notation with prefix changes. Table 15 gives the new
rules for prefix changes defined by functions on an ordinal parameter. Examples of all the
rules are shown in Table 17. The rules for parameters that leave the prefix unchanged have
been defined previously. They are in Section 3.2 and tables 5, 7, 8 and 10.

The strength of nested embedding comes in part from appending a large value of σ
when the least significant nonzero δ parameter is decremented and making κ much larger

18The character ‘︷’ (\lmoustache in LATEX math mode) was chosen to indicate that the two parameters
are connected as a pair.
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Nested embedding syntax in LATEX

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]]

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η]

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ,λ(α1, α2, ..., αn)

The ︷σk k = 1, 2, ...,m are optional.

Nested embedding syntax in plain text

[[d1/s1,d2/s3,...,dm/sm]]w_{k}

[[d1/s1,d2/s3,...,dm/sm]]w_{k}[[e]]

[[d1/s1,d2/s3,...,dm/sm]]w_{k}[e]

[[d1/s1,d2/s3,...,dm/sm]]w_{k,g}(a1,a2....,am)

The “/sk” k=1,2,...,m are optional.

There are several restrictions on these expressions.

1. ∀k<m{(δk < δk+1) ∨ ((δk = δk+1) ∧ (σk < σk+1))}.

2. κ ≤ δm.

3. If κ is a limit then no η parameter is allowed.

4. The most significant δ cannot be a limit.

5. If any other δ is a limit, then the associated σ must be 0.

6. If σm is a limit, then no η parameter is allowed.

7. [[δ]]ωδ[η] = ωδ[η] and thus the [[δ]] prefix is deleted if δ = κ in a notation with a
single bracketed suffix.

Figure 1: Nested embedding syntax and constraints
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1. S(ζ) ≡ ζ is a successor notation.

2. L(ζ) ≡ ζ is a limit notation.

3. ζ− is defined if the least significant nonzero parameter in notation ζ is a successor.
ζ− is identical with ζ except the least significant nonzero parameter is decremented
by 1.

4. ζ[[−]] is defined if ζ meets the conditions for defining a next least prefix in Table 14.
ζ[[−]] is the prefix of ζ modified as defined by this table. All definitions in this
table that contain double square brackets define prefixes.

5. D(X) means X is defined. This applies to conditional definitions 3 and 4.

6. ζ[[−︷β]] is identical with ζ[[−]] except δm must the least significant nonzero prefix
parameter in ζ and β is appended to the prefix defined in Table 14 as σm+1. There
is an exception. Nothing is appended if the prefix from the table is shorter than
the prefix in ζ. A shorter prefix means the only legal way to decrement the prefix
is to shorten it.

7. le is an abbreviation for limitElement.

8. lo is an abbreviation for limitOrd.

9. il is an abbreviation for increasingLimit. The routine, il(δm, γ) outputs in-
creasing values > δm for increasing γ. This is needed to insure that the ourput of
le and lo produce increasing outputs for increasing inputs.

Table 13: Conventions used in tables 14, 15 and 16

when the least significant σ is decremented. Doing this requires first decrementing a non
prefix parameter and the resulting notation is limitElement(1). If δm is decremented,
limitElement(n+1) contains the decremented prefix with limitElement(n) appended as
σm and the rest of the notation is the same as limitElement(1). If σm is decremented,
limitElement(n+1) contains the decremented prefix. κ in limitElement(n+1) is set equal
to limitElement(n). These cases are fully described in Table 15.

Figure 2 with notations in LATEX format and Figure 3 in plain text each summarize the
syntax in version 0.3.2 of the ordinal calculator. These figures are references with links to
the sections and tables that describe all parts of the syntax. The figures contain the same
information except for the notation format.
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Next least prefix of [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]
This is defined if the least significant prefix parameter, δm or σm, is a successor and δm = κ.

See Table 13 for conventions. The L column is line(s) in Table 17.

δm−1 and δm σm−1 and σm Next least prefix L

δm = δm−1 σm = σm−1 + 1 [[δ1︷σ1, , ..., δm−1︷σm−1]] 11

δm = δm−1 σm > σm−1 + 1 [[δ1︷σ1, , ..., δm−1︷σm−1, δm︷σm − 1]] 5

(δm > δm−1) ∨ (m = 1) S(σm) [[δ1︷σ1, , ..., δm−1︷σm−1, δm︷σm − 1]] 2,3,15

(δm + 1 = δm−1) ∧ L(δm−1) σm = σm−1 = 0 [[δ1︷σ1, δ2︷σ2, ..., δm−1]] 4

(δm + 1 = δm−1) ∧ S(δm−1) σm = 0 [[δ1︷σ1, , ..., δm−1︷σm−1, δm − 1︷σm−1 + 1]] 16,23,24

Table 14: Next least prefix

Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η]
if (σ1 > 0 ∨m > 1) ∧ η > 0 ∧ κ = δm ∧D(ζ−) ∧D(ζ[[−]]).

See Table 13 for conventions. The L column is example line(s) in Table 17.

Conditions on ζ ζ.le(1) ζ.le(n+1) L X

S(σm) ∧ η > 1 ζ− ζ[[−]]ωζ.le(n) 6,12,33 DQB,DQE,DQC

S(σm) ∧ η = 1 ζ[[−]]ωκ ζ[[−]]ωζ.le(n) 1,5,11,32 DQA,DQB,DQE,DQC

σm = 0 ∧ S(δm) ∧ η > 1 ζ− ζ[[−︷ζ.le(n)]]ωκ 10,24 DQD,DQD

σm = 0 ∧ S(δm) ∧ η = 1 ∧ δm > δm−1 + 1 ζ[[−]]wκ ζ[[−︷ζ.le(n)]]ωκ 7 DQD

σm = 0 ∧ S(δm) ∧ η = 1 ∧ δm = δm−1 + 1 ζ[[−︷1]]wκ ζ[[−︷ζ.le(n)]]ωκ 16 DQD

Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(α)
if (σ1 > 0 ∨m > 1) ∧ κ = δm ∧D(ζ−) ∧D(ζ[[−]]).

Conditions on ζ ζ.le(1) ζ.le(n+1) L X

S(σm) ∧ α > 1 ζ− ζ[[−]]ωζ.le(n) 21,27 PLEC,PLED

S(σm) ∧ α = 1 ζ− ζ[[−]]ωζ.le(n) 30 PLED

σm = 0 ∧ S(δm) ∧ α > 1 ζ− ζ[[−︷ζ.le(n)]]ωκ 28 PLEE

σm = 0 ∧ S(δm) ∧ α = 1 ∧ δm > δm−1 + 1 ζ[[−]]wκ ζ[[−︷ζ.le(n)]]ωκ 37 PLEE

σm = 0 ∧ S(δm) ∧ α = 1 ∧ δm = δm−1 + 1 ζ[[−]]wκ ζ[[−︷ζ.le(n)]]ωκ 36 PLEE

Table 15: Rules that change [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]] by decrementing it
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Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ
for ((L(δm) ∧ σm = 0) ∨ L(σm)) ∧ δm = κ.

See Table 13 for conventions. The L column is example line(s) in Table 17.

δ and σ ζ.limitOrd(β) L X

S(δm) ∧ L(σm) ∧ δm−1 < κ [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, κ︷σm[β]]]ωκ 29 NEF

S(δm) ∧ L(σm) ∧ δm−1 = κ [[δ1︷σ1, δ2︷σ2, ..., κ︷σm−1, κ︷(σm−1 + σm[β])]]ωκ 35 NEF

L(δm) ∧ σm = 0 [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, (δm−1 + κ[β])]]ωδm−1+κ[β] 26 NEG

Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(α)
for S(α) ∧ ((L(δm) ∧ σm = 0) ∨ L(σm)).

δ and σ (δm = κ) ζ.limitOrd(β) L X

S(δm) ∧ L(σm) ∧ δm−1 < κ [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, κ︷σm[β]]]ωκ,α− 41 NEB

S(δm) ∧ L(σm) ∧ δm−1 = κ [[δ1︷σ1, δ2︷σ2, ..., κ︷σm−1, κ︷(σm−1 + σm[β])]]ωκ,α− 34 NEB

L(δm) ∧ σm = 0 [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, (δm−1 + κ[β])]]ωδm−1+κ[β],α− 25 NEC

Table 16: Rules that change [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]] by taking a limit
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α α.limitElement(n)
n=1 n=2 X

1 [[1︷1]]ω1[12] [[1︷1]]ω1[11] [[1]]ω[[1︷1]]ω1[11] DQA
2 [[1, 3︷1]]ω3[1] [[1, 3]]ω3 [[1, 3]]ω[[1,3]]ω3

DQB
3 [[1, 3︷1]]ω3[4] [[1, 3︷1]]ω3[3] [[1, 3]]ω[[1,3︷1]]ω3[3] DQB
4 [[1, ω, ω + 1]]ωω+1[1] [[1, ω]]ωω+1 [[1, ω]]ω[[1,ω]]ωω+1

DQE
5 [[2, 3︷8]]ω3[1] [[2, 3︷7]]ω3 [[2, 3︷7]]ω[[2,3︷7]]ω3

DQB
6 [[2, 3︷8]]ω3[5] [[2, 3︷8]]ω3[4] [[2, 3︷7]]ω[[2,3︷8]]ω3[4] DQB
7 [[2, 4]]ω4[1] [[2, 3]]ω4 [[2, 3︷[[2, 3]]ω4 + 1]]ω4 DQD
8 [[2, 5︷ω1]]ωω12[ω]+5 [[2, 5︷ω1]]ωω12[ω]+5[[1]] [[2, 5︷ω1]]ωω12[ω]+5[[2]] LEDE
9 [[2︷5, 4]]ω4[1] [[2︷5, 3]]ω4 [[2︷5, 3︷[[2︷5, 3]]ω4 + 1]]ω4 DQD

10 [[2︷5, 4]]ω4[3] [[2︷5, 4]]ω4[2] [[2︷5, 3︷[[2︷5, 4]]ω4[2] + 1]]ω4 DQD
11 [[2, 3︷4, 3︷5]]ω3[1] [[2, 3︷4]]ω3 [[2, 3︷4]]ω[[2,3︷4]]ω3

DQE
12 [[2, 3︷4, 3︷5]]ω3[6] [[2, 3︷4, 3︷5]]ω3[5] [[2, 3︷4]]ω[[2,3︷4,3︷5]]ω3[5] DQE
13 [[2, 3︷4, 3︷8]]ω3[[1]] ω [[2, 3︷4, 3︷8]]ω3[ω] DCBO
14 [[3︷ω]]ω3 [[3︷1]]ω3 [[3︷2]]ω3 NEF
15 [[3︷ω + 1]]ω3[1] [[3︷ω]]ω3 [[3︷ω]]ω[[3︷ω]]ω3

DQB
16 [[3, 4]]ω4[1] [[3, 3︷1]]ω4 [[3, 3︷[[3, 3︷1]]ω4 + 1]]ω4 DQD
17 [[3, ω]]ωω [[3, 4]]ω4 [[3, 5]]ω5 NEG
18 [[3, ω]]ωω(1) [[3, 4]]ω4,[[3,ω]]ωω+1 [[3, 5]]ω5,[[3,ω]]ωω+1 NEC
19 [[3, ω]]ωωω [[3, ω]]ωω2 [[3, ω]]ωω2+ω LEEE
20 [[3, ω15]]ωωω [[3, ω15]]ωω16 [[3, ω15]]ωω2+ω15 LEEE
21 [[3︷2, 3︷3]]ω3(8) [[3︷2, 3︷3]]ω3(7) [[3︷2]]ω[[3︷2,3︷3]]ω3(7) PLEC
22 [[3︷5, 3︷7]]ω3[[9]] [[3︷5, 3︷7]]ω3[[8]] [[3︷5, 3︷7]]ω3[[[3︷5, 3︷7]]ω3[[8]]] DCCS
23 [[3︷5, 4]]ω4[1] [[3︷5, 3︷6]]ω4 [[3︷5, 3︷[[3︷5, 3︷6]]ω4 + 1]]ω4 DQD
24 [[3︷5, 4]]ω4[3] [[3︷5, 4]]ω4[2] [[3︷5, 3︷[[3︷5, 4]]ω4[2] + 1]]ω4 DQD
25 [[3︷5, ω]]ωω(5) [[3︷5, 4]]ω4,[[3︷5,ω]]ωω(4)+1 [[3︷5, 5]]ω5,[[3︷5,ω]]ωω(4)+1 NEC
26 [[3︷ω, ω]]ωω [[3︷ω, 4]]ω4 [[3︷ω, 5]]ω5 NEG
27 [[4, 7︷8]]ω7(9) [[4, 7︷8]]ω7(8) [[4, 7︷7]]ω[[4,7︷8]]ω7(8) PLED
28 [[4︷8, 7]]ω7(9) [[4︷8, 7]]ω7(8) [[4︷8, 6︷[[4︷8, 7]]ω7(8) + 1]]ω7 PLEE
29 [[4︷12, 5︷ω3]]ω5 [[4︷12, 5︷ω3[1]]]ω5 [[4︷12, 5︷ω3[2]]]ω5 NEF
30 [[4︷12, 7︷8]]ω7(1) [[4︷12, 7︷8]]ω7 [[4︷12, 7︷7]]ω[[4︷12,7︷8]]ω7

PLED
31 [[5, 6]]ω6(9) [[5, 6]]ω6(8) [[5, 5︷[[5, 6]]ω6(8) + 1]]ω6 PLEE
32 [[5, ω + 1]]ωω+1[1] [[5, ω]]ωω+1 [[5, ω]]ω[[5,ω]]ωω+1

DQC
33 [[5, ω + 1]]ωω+1[9] [[5, ω + 1]]ωω+1[8] [[5, ω]]ω[[5,ω+1]]ωω+1[8] DQC
34 [[5︷ω3, 5︷ω2]]ω5(12) [[5︷ω3, 5︷ω4]]ω5,[[5︷ω3,5︷ω2]]ω5(11)+1 [[5︷ω3, 5︷ω5]]ω5,[[5︷ω3,5︷ω2]]ω5(11)+1 NEB
35 [[5︷ω100, 5︷ω2]]ω5 [[5︷ω100, 5︷ω101]]ω5 [[5︷ω100, 5︷ω102]]ω5 NEF
36 [[8︷ω4, 9]]ω9(1) [[8︷ω4, 9]]ω9 [[8︷ω4, 8︷[[8︷ω4, 9]]ω9 + 1]]ω9 PLEE
37 [[8︷ω4, 12]]ω12(1) [[8︷ω4, 12]]ω12 [[8︷ω4, 11︷[[8︷ω4, 12]]ω12 + 1]]ω12 PLEE
38 [[12︷1]]ω12(3) [[12︷1]]ω12(2) [[12]]ω12,[[12︷1]]ω12(2)+1 PLEB
39 [[12, ω3]]ωω4(ω + 1) [[12, ω3]]ωω4[1]+ω3,[[12,ω3]]ωω4 (ω)+1 [[12, ω3]]ωω4[2]+ω3,[[12,ω3]]ωω4 (ω)+1 LCEL

40 [[15︷4]]ω15(7) [[15︷4]]ω15(6) [[15︷3]]ω[[15︷4]]ω15(6) PLED
41 [[15︷ω3]]ω15(12) [[15︷ω3[1]]]ω15,[[15︷ω3]]ω15(11)+1 [[15︷ω3[2]]]ω15,[[15︷ω3]]ω15(11)+1 NEB

Table 17: Nested embed ordinal notations in increasing order
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Cantor normal form (See Section 2).

α1 > α2 > α3 > ... > αk

α and the αi are ordinal notations, ni are nonzero integers

ωα1n1 + ωα2n2 + ωα3n3 + ...+ ωαknk (3)

Finite parameter Veblen functions (See sections 3.1, 3.2 and tables 1, 2, 3 and 4.)
ϕ(α1, α2, ..., αk) (4)

Transfinite Veblen functions (See Section 3.3 and tables 5 and 6.)
ϕγ(α1, α2, ..., αm) (5)

Countable admissible ordinals (See Section 5.1 and tables 7, 8 and 9.)
ωκ (6)
ωκ[η] (7)

ωκ,γ(α1, α2, ..., αm) (8)

Projection on countable admissible ordinals (See Section 5.2 and tables 10, 11 and 12.)
[[δ]]ωκ (9)

[[δ]]ωκ[[η]] (10)
[[δ]]ωκ[η] (11)

[[δ]]ωκ,γ(α1, α2, ..., αm) (12)

Nested ordinal projection (See Section 6, tables 13, 14, 15, 16, 17 and Figure 1.)
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ (13)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η] (14)
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]] (15)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ,γ(α1, α2, ..., αk) (16)

The ︷σk k = 1, 2, ...,m are optional.

Figure 2: Ordinal calculator notation LATEX format
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Cantor normal form (See Section 2).

α1 > α2 > α3 > ... > αk

α and the αi are ordinal notations, ni are nonzero integers
w^a1*n1+w^a2*n2+w^a3*n3+...+w^ak*nk (3)

Finite parameter Veblen functions (See sections 3.1, 3.2 and tables 1, 2, 3 and 4.)
psi(al1,al3,...,alk) (4)

Transfinite Veblen functions (See Section 3.3 and tables 5 and 6.)

psi_{g}(al1,al2,...,alk) (5)

Countable admissible ordinals (See Section 5.1 and tables 7, 8 and 9.)

w_{k} (6)

w_{k}[e] (7)

w_{k,g}(al1,al2,...,alk) (8)

Projection on countable admissible ordinals (See Section 5.2 and tables 10, 11 and 12.)

[[d]]w_{k} (9)

[[d]]w_{k}[[e]] (10)

[[d]]w_{k}[e] (11)

[[d]]w_{k,g}(al1,al2,...,alk) (12)

Nested ordinal projection (See Section 6, tables 13, 14, 15, 16, 17 and Figure 1.)

[[d1/s1,d2/s2,...,dm/sm]]w_{k} (13)

[[d1/s1,d2/s2,...,dm/sm]]w_{k}[[e]] (14)

[[d1/s1,d2/s2,...,dm/sm]]w_{k}[e] (15)

[[d1/s1,d2/s2,...,dm/sm]]w_{k,g}(al1,al2,...,alk) (16)

The “/sk” k=1,2,...,m are optional.

Figure 3: Ordinal calculator notation plain text format

28



7 Mathematical truth

A recursive formal mathematical system, such as ZF (Zermelo Frankel set theory), is a
recursive process for enumerating theorems. Thus it is subject to analysis with the tools of
computer science. However the mathematical content of ZF includes the uncountable and far
beyond it. This would seem to be outside of the reach of computer science. The Löwenheim-
Skolem theorem proved that a first order formal system, such as ZF, that has a model
must have a countable model. This raises questions about the nature of the uncountable
in mathematics. The views of three logicians show the range of interpretations offered in
response to these issues.

Paul J. Cohen, who proved that the negation of CH (Continuum Hypothesis19) is con-
sistent with ZF if ZF is consistent, draws a boundary between sets definable by properties
of the integers and other infinite sets[4, p. 10].

There certainly are some cases in which the use of infinite sets presents no essen-
tial difficulties. For example, to say that a property holds for all integers or that
it holds for all members of the set of integers, is clearly equivalent. Similarly, to
say n belongs to the set of even integers is equivalent to saying that n is even.
Thus the use of some sets can be avoided by referring back to a suitable property.
If this could always be done we would have no problem.

Cohen goes on in this paper and another published decades later to declare that he is a
formalist when it comes to the uncountable[5, p. 2416].

Does set theory, once we get beyond the integers, refer to an existing reality, or
must it be regarded, as formalists would regard it, as an interesting formal game?
... Through the years I have sided more firmly with the formalist position. This
view is tempered with a sense of reverence for all mathematics which has used
set theory as a basis, and in no way do I attack the work which has been done
in set theory.

It is interesting to contrast this view with two alternatives. Solomon Feferman, the
principle editor of Gödel’s collected works, argues that the objectivity of mathematics stems
from inter-subjective human conceptions[6].

... I think the Platonistic philosophy of mathematics that is currently claimed to
justify set theory and mathematics more generally is thoroughly unsatisfactory
and that some other philosophy grounded in inter-subjective human conceptions
will have to be sought to explain the apparent objectivity of mathematics.

In a later paper he describes in detail why he believes the Continuum Hypothesis is too vague
to be definitely true or false and elaborates on his proposal of Conceptual Structuralism as
a basis for mathematical objectivity. He emphasizes that human conceptual creations, such
as money, are objective. He thinks mathematics falls in this category[7].

Finally there is the proposal by Hamkins of a Platonic multiverse[10].

19The Continuum Hypothesis states that there is no set larger than the integers (that the integers cannot
be mapped onto) and smaller then the reals (and that cannot be mapped onto the reals). Gödel proved that
ZF+CH was consistent if ZF is consistent. Cohen proved that ZF+CH was consistent if ZF is consistent.
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In this article, I shall argue for a contrary position the multiverse view, which
holds that there are diverse distinct concepts of set, each instantiated in a corre-
sponding set-theoretic universe, which exhibit diverse set-theoretic truths. Each
such universe exists independently in the same Platonic sense that proponents of
the universe view regard their universe to exist.

This illustrates the wide range of views among logicians. I think there is a grain of
truth in all three of these views starting with the objectivity of properties of the integers (or
equivalently TMs). Much of mathematics can be defined as properties of recursive processes
including divergent properties that may involve quantification over the reals. Each of these
properties is logically determined by a recursively enumerable sequence of events. These
sequences can only be generated by computers that run forever error free with unlimited
storage. That ideal does not exist, but, as technology progresses, the ideal computer can be
approximated for ever more execution steps with ever greater probability of being error free.

For me the objective basis of mathematics lies in physical reality. However the objective
relationships between recursively enumerable events are human conceptual creations. For
example a TM halting can be a physical event, but the general concept of the halting
problem for TMs is a human conceptual creation connected to physical reality, but not
corresponding to any specific physical event. The halting problem is at the root of a a
hierarchy of relationships determined by a recursively enumerable sequence of events that
matches a mathematical hierarchy.

7.1 Properties of the integers

This hierarchy of mathematics starts with the arithmetical and hyperarithmetical hierar-
chies20 which have an interpretation as generalizations of the computer halting problem.
Every Π2 statement is equivalent to the question does a particular TM have an infinite
number of outputs. This is implied by the U quantifier. Uxr(x) is true iff r(x), a recursive
relation, is true on an infinite subset of the integers. ∀n1∃n2r1(n1, n2) can be replaced with
Unr2(n) where r1 and r2 are recursive relations[12]. It is straightforward to generate r2 from
r1. Further every Π4 statement is equivalent to the question does a particular TM have an
infinite number of outputs an infinite subset of which are the Gödel numbers of TMs that
have an infinite number of outputs. This can be generalized to define Π2n statements for any
integer n and iterated up to any recursive ordinal to define any hyperarithmetical statement.

Going further, Kleene’s O is defined by properties of TMs, albeit properties that require
quantification over the reals. The set of all members of O is a Π1

1 complete21set[18]. Finally,
the limit of the countable admissible ordinals is the first uncountable ordinal and these are
defined as Kleene’s O is defined for TMs with an oracle for smaller admissible ordinals[1].

20Statements in the arithmetical hierarchy are those with a finite number of quantifiers (∀ and ∃) over the
integers on a recursive relationship. The hyperarithmetic hierarchy, loosely speaking, iterates this definition
up to any recursive ordinal.

21A set is Π1
1 complete if a TM with an oracle for this set can decide any Π1

1 statement.
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7.2 The reals

Does a TM that accepts an arbitrarily long sequence of integer inputs halt for every possible
sequence? This question is logically determined by a recursively enumerable sequence: which
finite sequences of inputs cause the TM to halt. A nondeterministic TM22 can enumerate all
of these events. If the sequences that halt include an initial segment of every real number
than the answer is yes and no otherwise. Some initial segments obviously cover every possible
real number. For the binary reals less than 1, the decimal fractions that start with .0 and .1
cover every real number.

Some statements that require quantification over the reals are about properties of a
TM along divergent paths such that every event that determines the outcome is logically
determined and recursively enumerable. These statements are objectively true or false.
This is not true for other statements reals such as the Continuum Hypothesis. Like the
three logicians quoted in Section 7, I doubt that that the Continuum Hypothesis has a
definite truth value. I draw the line with processes that are logically determined by a
recursively enumerable sequence of events. That definition clearly includes many statements
and excludes many others. However it is not precise enough to define exactly what statements
are included. From Gödel we know that every mathematical system of sufficient strength
will be incomplete with respect to provability. I think it will also be incomplete with respect
to definability.

In light of the Lowenheim-Skolem theorem and at least relative to an always finite but
potentially infinite universe Cantor’s proof that the reals are not countable is an incom-
pleteness theorem. It cannot tell us something about the relative size of completed infinite
totalities if no such thing exists. This interpretation suggests that the cardinal numbers are
not definite sets but reflect ways the countable sets can always be expanded in a “correct”
formal system. For example in a Löwenheim-Skolem derived countable model for ZF all the
sets that are seen as uncountable within ZF are countable in the model.

7.3 Expanding mathematics

Cohen concludes his second philosophical paper on a pessimistic note[5, p. 2418].

I believe that the vast majority of statements about the integers are totally and
permanently beyond proof in any reasonable system. ...

In this pessimistic spirit, I may conclude by asking if we are witnessing the
end of the era of pure proof, begun so gloriously by the Greeks. I hope that
mathematics lives for a very long time, and that we do not reach that dead end
for many generations to come.

There is a way to explore all objective mathematical truth in an always finite but un-
bounded universe. With no limits, civilization can try everything. That may seem absurd
but it appears to be how the mathematically capable human mind evolved. It is doubtful

22A nondeterministic TM simulates all the TMs with Gödel numbers in a specified recursively enumerable
sequence. It is straightforward to write a single TM program that does exactly what every one of these
individual TMs do for every time step.
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that this could have happened in a world that was significantly less diverse than ours. Of
course biological evolution has only a small random component. Mostly it builds on it-
self. Over billions of years, random perturbations have created humanity with the ability to
understand where we came from and perhaps to choose where we go.

One can extend mathematics in a similar selective and divergent way. The multiverse
of Hamkins may not be a Platonic reality, but a partial map of the possible ways in which
mathematics can be extended. It is essential that we build on what exists but extend this
with ever expanding diversity. Otherwise we will run into a what I call a Gödel limit.
This is a sequence of ever more powerful mathematical models all of which may eventually
be discovered in a single path of mathematical exploration and development that extends
forever. However all of the results are subsumed by a single more powerful result that will
never be discovered inside the Gödel limit. The only way to avoid a Gödel limit is through
an unbounded expansion of diversity.

Why would it be worth the effort to explore this mathematics? Existing mathematics goes
far beyond what is commonly used in science and engineering[6]. The answer to this question
takes us outside of mathematics to questions of ultimate meaning and value. Bertrand Russell
in 1927 at the end of the Analysis of Matter observed that intrinsic nature and by implication
intrinsic value only exists in conscious experience.

As regards the world in general, both physical and mental, everything that we
know of its intrinsic character is derived from the mental side, and almost ev-
erything that we know of its causal laws is derived from the physical side. But
from the standpoint of philosophy the distinction between physical and mental
is superficial and unreal[19, p. 402].

Science first abandoned the fundamental substances of earth, air, fire and water and later
Newtonian billiard balls for pure mathematical models lacking any fundamental substance.
This is made explicit in set theory where the fundamental entity is the empty set or nothing
at all. Intrinsic nature and thus meaning and value exists only in conscious experience.

Nonetheless the evolution of consciousness has been an evolution of structure. Repro-
ducing molecules have evolved to create the depth and richness of human consciousness.
They have also evolved to the point where we can take conscious control over future human
evolution. Human genetic engineering has already begun as a way to cure or prevent horrible
diseases. Over time the techniques will be perfected to the point where one may consider
using them for human enhancement. We will need to have a sense of meaning and values
that is up to the challenge this capability presents.

The depth and richness of human consciousness seems to require the level of abstraction
and self reflection that has evolved. These seem necessary for both richness of human con-
sciousness and the ability to create mathematics. The ordinal numbers are the backbone of
mathematics determining what problems are decidable and what objects are definable in a
mathematical system. Do they also impose limits on the depth and richness of human con-
sciousness? If so than diversity is critical to the unbounded exploration of possible conscious
experience. This possibility is explored in a video Mathematical Infinity and Human Destiny
and a book[2].
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